Andrew J Fuglevand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478349/publications.pdf

Version: 2024-02-01

34 papers 1,157 citations

471509 17 h-index 28 g-index

37 all docs

37 docs citations

37 times ranked

1033 citing authors

#	Article	IF	CITATIONS
1	Restoration of complex movement in the paralyzed upper limb. Journal of Neural Engineering, 2022, 19, 046002.	3.5	7
2	Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Communications, 2020, 2, fcaa203.	3.3	11
3	The brain can make you stronger. Journal of Physiology, 2019, 597, 1779-1780.	2.9	1
4	Object discrimination using electrotactile feedback. Journal of Neural Engineering, 2018, 15, 046007.	3.5	29
5	Distributed stimulation increases force elicited with functional electrical stimulation. Journal of Neural Engineering, 2018, 15, 026001.	3.5	16
6	New perspectives on the neurophysiology of primate amygdala emerging from the study of naturalistic social behaviors. Wiley Interdisciplinary Reviews: Cognitive Science, 2018, 9, e1449.	2.8	24
7	Feature Analysis for Discrimination of Motor Unit Action Potentials. , 2018, , .		O
8	Mitigation of excessive fatigue associated with functional electrical stimulation. Journal of Neural Engineering, 2018, 15, 066004.	3.5	13
9	Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents. Journal of Physiology, 2017, 595, 179-191.	2.9	41
10	A motor unit-based model of muscle fatigue. PLoS Computational Biology, 2017, 13, e1005581.	3.2	82
11	Current injection and receptor-mediated excitation produce similar maximal firing rates in hypoglossal motoneurons. Journal of Neurophysiology, 2016, 115, 1307-1313.	1.8	2
12	Tactile Stimulation of the Face and the Production of Facial Expressions Activate Neurons in the Primate Amygdala. ENeuro, 2016, 3, ENEURO.0182-16.2016.	1.9	21
13	Prediction of muscle activity during loaded movements of the upper limb. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 6.	4.6	22
14	Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units. Journal of Neurophysiology, 2015, 113, 1310-1322.	1.8	49
15	Evaluating a possible role for persistent inward currents in firing rate saturation. FASEB Journal, 2012, 26, 901.3.	0.5	O
16	Developmental Nicotine Exposure Alters Neurotransmission and Excitability in Hypoglossal Motoneurons. Journal of Neurophysiology, 2011, 105, 423-433.	1.8	37
17	Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study. Journal of Neurophysiology, 2011, 106, 1467-1479.	1.8	35
18	Mechanical properties and neural control of human hand motor units. Journal of Physiology, 2011, 589, 5595-5602.	2.9	38

#	Article	IF	CITATIONS
19	Mimicking muscle activity with electrical stimulation. Journal of Neural Engineering, 2011, 8, 016009.	3.5	18
20	Prenatal nicotine exposure alters intrinsic properties of neonatal hypoglossal motor neurons in the rhythmic medullary slice preparation. FASEB Journal, $2010, 24, .$	0.5	0
21	Extent of shared presynaptic input to motor units of tongue and inspiratory intercostal muscles. FASEB Journal, 2010, 24, 1064.10.	0.5	0
22	Perception of electrical and mechanical stimulation of the skin: implications for electrotactile feedback. Journal of Neural Engineering, 2009, 6, 066008.	3.5	22
23	Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics. Journal of Neural Engineering, 2009, 6, 055008.	3.5	18
24	Probability-Based Prediction of Activity in Multiple Arm Muscles: Implications for Functional Electrical Stimulation. Journal of Neurophysiology, 2008, 100, 482-494.	1.8	14
25	Firing Patterns of Human Genioglossus Motor Units During Voluntary Tongue Movement. Journal of Neurophysiology, 2007, 97, 933-936.	1.8	53
26	Evaluation of plateau-potential-mediated â€~warm up' in human motor units. Journal of Physiology, 2006, 571, 683-693.	2.9	31
27	Reâ€Evaluation of Muscle Wisdom in the Human Adductor Pollicis using Physiological Rates of Stimulation. Journal of Physiology, 2003, 549, 865-875.	2.9	61
28	Restoration of Movement Using Functional Electrical Stimulation and Bayes' Theorem. Journal of Neuroscience, 2002, 22, 9465-9474.	3.6	16
29	Motor unit physiology: Some unresolved issues. Muscle and Nerve, 2001, 24, 4-17.	2.2	300
30	Force-Frequency and Fatigue Properties of Motor Units in Muscles That Control Digits of the Human Hand. Journal of Neurophysiology, 1999, 81, 1718-1729.	1.8	132
31	Contractile Properties of Human Motor Units: Is Man a Gat?. Neuroscientist, 1998, 4, 240-249.	3. 5	43
32	Henneman's Size Principle: The Right Name. , 1998, 281, 919c-919.		2
33	Limitations of the surface electromyography technique for estimating motor unit synchronization. Biological Cybernetics, 1995, 73, 223-233.	1.3	2
34	Motor unit physiology: Some unresolved issues. , 0, .		1