Cai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478325/publications.pdf

Version: 2024-02-01

70 4,371 36 64 papers citations h-index 70 70 6299

70 70 70 6299
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. Journal of Neuroinflammation, 2022, 19, 39.	3.1	12
2	Interleukin-10 Attenuates Behavioral, Immune and Neurotrophin Changes Induced by Chronic Central Administration of Interleukin- $\hat{\Pi}^2$ in Rats. NeuroImmunoModulation, 2022, 29, 380-390.	0.9	2
3	The Emerging Evidence for a Protective Role of Fucoidan from Laminaria japonica in Chronic Kidney Disease-Triggered Cognitive Dysfunction. Marine Drugs, 2022, 20, 258.	2.2	8
4	Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Research Bulletin, 2021, 166, 44-53.	1.4	9
5	Isoginkgetin treatment attenuated lipopolysaccharide-induced monoamine neurotransmitter deficiency and depression-like behaviors through downregulating p38/NF-κB signaling pathway and suppressing microglia-induced apoptosis. Journal of Psychopharmacology, 2021, 35, 026988112110324.	2.0	8
6	Heterophyllin B, a cyclopeptide from <i>Pseudostellaria heterophylla</i> , enhances cognitive function via neurite outgrowth and synaptic plasticity. Phytotherapy Research, 2021, 35, 5318-5329.	2.8	5
7	Endogenous n-3 PUFAs attenuated olfactory bulbectomy-induced behavioral and metabolomic abnormalities in Fat-1 mice. Brain, Behavior, and Immunity, 2021, 96, 143-153.	2.0	4
8	Endogenous ï‰-3 fatty acids in Fat-1 mice attenuated depression-like behaviors, spatial memory impairment and relevant changes induced by olfactory bulbectomy. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 171, 102313.	1.0	8
9	ï‰-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-κB/MAPK p38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways. Marine Drugs, 2021, 19, 587.	2.2	40
10	Enriched environment mitigates depressive behavior by changing the inflammatory activation phenotype of microglia in the hippocampus of depression model rats. Brain Research Bulletin, 2021, 177, 252-262.	1.4	10
11	High-glucose/high-cholesterol diet in zebrafish evokes diabetic and affective pathogenesis: The role of peripheral and central inflammation, microglia and apoptosis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96, 109752.	2.5	33
12	Seahorse treatment improves depression-like behavior in mice exposed to CUMS through reducing inflammation/oxidants and restoring neurotransmitter and neurotrophin function. Journal of Ethnopharmacology, 2020, 250, 112487.	2.0	50
13	Hederagenin Modulates M1 Microglial Inflammatory Responses and Neurite Outgrowth. Natural Product Communications, 2020, 15, 1934578X2094625.	0.2	3
14	EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. International Journal of Molecular Sciences, 2020, 21, 1769.	1.8	77
15	Potential treatment of Parkinson's disease with omega-3 polyunsaturated fatty acids. Nutritional Neuroscience, 2020, , 1-12.	1.5	21
16	Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience, 2020, 429, 33-45.	1.1	9
17	Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behavioural Brain Research, 2020, 389, 112644.	1.2	18
18	Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behavioural Brain Research, 2019, 356, 348-357.	1.2	104

#	Article	IF	CITATIONS
19	Platycodigenin as Potential Drug Candidate for Alzheimer's Disease via Modulating Microglial Polarization and Neurite Regeneration. Molecules, 2019, 24, 3207.	1.7	28
20	Astrocyte-Conditioned Medium Protects Prefrontal Cortical Neurons from Glutamate-Induced Cell Death by Inhibiting TNF-α Expression. NeuroImmunoModulation, 2019, 26, 33-42.	0.9	9
21	Activation of microglia synergistically enhances neurodegeneration caused by MPP+ in human SH-SY5Y cells. European Journal of Pharmacology, 2019, 850, 64-74.	1.7	14
22	Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behavioural Brain Research, 2019, 363, 109-117.	1.2	47
23	Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opinion on Drug Discovery, 2019, 14, 365-378.	2.5	14
24	The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. Aquatic Toxicology, 2019, 210, 44-55.	1.9	27
25	Zebrafish models of diabetes-related CNS pathogenesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 48-58.	2.5	18
26	Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. Journal of Neuroscience Research, 2019, 97, 402-413.	1.3	43
27	Mifepristone attenuates depression-like changes induced by chronic central administration of interleukin- $\hat{\Pi}^2$ in rats. Behavioural Brain Research, 2018, 347, 436-445.	1.2	33
28	Zebrafish models relevant to studying central opioid and endocannabinoid systems. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 86, 301-312.	2.5	48
29	Zebrafish models of autism spectrum disorder. Experimental Neurology, 2018, 299, 207-216.	2.0	103
30	Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin- $\hat{1}^2$ administration. European Journal of Nutrition, 2018, 57, 1781-1791.	1.8	62
31	DHA, EPA and their combination at various ratios differently modulated A \hat{I}^2 25-35-induced neurotoxicity in SH-SY5Y cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 85-94.	1.0	27
32	Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 384-394.	2.5	77
33	Endogenous Omega (n)-3 Fatty Acids in Fat-1 Mice Attenuated Depression-Like Behavior, Imbalance between Microglial M1 and M2 Phenotypes, and Dysfunction of Neurotrophins Induced by Lipopolysaccharide Administration. Nutrients, 2018, 10, 1351.	1.7	51
34	Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience and Biobehavioral Reviews, 2017, 77, 148-164.	2.9	101
35	Better lab animal models for translational neuroscience research and CNS drug development. Lab Animal, 2017, 46, 91-92.	0.2	14
36	Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish, 2017, 14, 197-208.	0.5	169

#	Article	IF	Citations
37	Understanding zebrafish cognition. Behavioural Processes, 2017, 141, 229-241.	0.5	40
38	N -methyl- d -aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus. Journal of Neuroimmunology, 2017, 307, 7-13.	1.1	40
39	Animal inflammation-based models of depression and their application to drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 995-1009.	2.5	57
40	The Role of E-Cadherin l²-Catenin in Hydroxysafflor Yellow A Inhibiting Adhesion, Invasion, Migration and Lung Metastasis of Hepatoma Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 1706-1715.	0.6	18
41	An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by Aβ25–35. Marine Drugs, 2017, 15, 83.	2.2	18
42	Application of Chitosan, Chitooligosaccharide, and Their Derivatives in the Treatment of Alzheimer's Disease. Marine Drugs, 2017, 15, 322.	2.2	48
43	Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neuroscience and Biobehavioral Reviews, 2016, 65, 292-312.	2.9	63
44	Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries. Behavioural Brain Research, 2016, 311, 24-30.	1.2	15
45	Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Research Bulletin, 2016, 125, 79-91.	1.4	43
46	'Stressing' rodent self-grooming for neuroscience research. Nature Reviews Neuroscience, 2016, 17, 591-591.	4.9	38
47	Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience, 2016, 17, 45-59.	4.9	558
48	The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?. Progress in Lipid Research, 2016, 62, 41-54.	5. 3	146
49	Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opinion on Drug Discovery, 2016, 11, 11-25.	2.5	16
50	Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicology, 2016, 170, 297-309.	1.9	106
51	Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research. Molecular Neurobiology, 2016, 53, 2927-2935.	1.9	40
52	Understanding the genetic architectonics of complex CNS traits: Lost by the association, but found in the interaction?. Journal of Psychopharmacology, 2015, 29, 872-877.	2.0	2
53	Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neuroscience and Biobehavioral Reviews, 2015, 53, 25-36.	2.9	50
54	Enhanced inflammatory and T-helper-1 type responses but suppressed lymphocyte proliferation in patients with seasonal affective disorder and treated by light therapy. Journal of Affective Disorders, 2015, 185, 90-96.	2.0	24

#	Article	IF	CITATIONS
55	Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 63, 76-82.	2.5	3
56	A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. Journal of Neuroscience Methods, 2015, 255, 66-74.	1.3	71
57	Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity. Zebrafish, 2015, 12, 339-348.	0.5	40
58	Wen-Dan Decoction Improves Negative Emotions in Sleep-Deprived Rats by Regulating Orexin-A and Leptin Expression. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	0.5	14
59	Acute and subacute IL- $1\hat{l}^2$ administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. Journal of Neuroinflammation, 2013, 10, 59.	3.1	99
60	Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Medicine, 2012, 10, 66.	2.3	479
61	Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 760-768.	2.5	243
62	Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices. European Journal of Pharmacology, 2010, 649, 127-134.	1.7	39
63	Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukinâ \in 1 $^{\circ}$ 2 administrations: effects of omegaâ \in 3 fatty acid EPA treatment. Journal of Neurochemistry, 2010, 112, 1054-1064.	2.1	85
64	Increased Phospholipase A2 Activity and Inflammatory Response But Decreased Nerve Growth Factor Expression in the Olfactory Bulbectomized Rat Model of Depression: Effects of Chronic Ethyl-Eicosapentaenoate Treatment. Journal of Neuroscience, 2009, 29, 14-22.	1.7	162
65	Long-Chain Polyunsaturated Fatty Acids Modulate Interleukin- $1\hat{I}^2\hat{a}$ "Induced Changes in Behavior, Monoaminergic Neurotransmitters, and Brain Inflammation in Rats ,. Journal of Nutrition, 2008, 138, 954-963.	1.3	90
66	Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL- $\hat{1}^2$ administration. Journal of Lipid Research, 2004, 45, 1112-1121.	2.0	97
67	Dietary Ethyl-eicosapentaenoic Acid but not Soybean Oil Reverses Central Interleukin-1-induced Changes in Behavior, Corticosterone and Immune Response in Rats. Stress, 2004, 7, 43-54.	0.8	66
68	Interleukin 1 beta enhances conditioned fear memory in rats: possible involvement of glucocorticoids. European Journal of Neuroscience, 2003, 18, 1739-1743.	1.2	60
69	Effects of dietary n-3 or n-6 fatty acids on interleukin- $1\hat{l}^2$ -induced anxiety, stress, and inflammatory responses in rats. Journal of Lipid Research, 2003, 44, 1984-1991.	2.0	144
70	The effect of thymectomy and IL-1 on memory: Implications for the relationship between immunity and depression. Brain, Behavior, and Immunity, 2002, 16, 557-568.	2.0	51