Guo Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478225/publications.pdf

Version: 2024-02-01

206112 147801 2,395 60 31 48 citations h-index g-index papers 68 68 68 1909 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoredox/copper-catalyzed coupling of terminal alkynes with P(O)SH compounds leading to alkynyl phosphorothioates. Green Chemistry, 2022, 24, 4484-4489.	9.0	14
2	Formation of Nâ^'P(O)â^'S Bonds from White Phosphorus via a Fourâ€Component Reaction. Advanced Synthesis and Catalysis, 2022, 364, 2221-2226.	4.3	8
3	Visible-light-induced denitrogenative phosphorylation of benzotriazinones: a metal- and additive-free method for accessing <i>ortho</i> -phosphorylated benzamide derivatives. Green Chemistry, 2021, 23, 296-301.	9.0	21
4	Diphenyl Diselenide-Catalyzed Synthesis of Triaryl Phosphites and Triaryl Phosphates from White Phosphorus. Organic Letters, 2021, 23, 5158-5163.	4.6	19
5	Synthesis of Î'-phosphorothiolated alcohols by photoredox/copper catalyzed remote C(sp ³)â€"H phosphorothiolation of <i>N</i> -alkoxypyridinium salts. Organic Chemistry Frontiers, 2021, 8, 6845-6850.	4.5	14
6	Photoinduced Phosphorylation/Cyclization of Cyanoaromatics for Divergent Access to Mono- and Diphosphorylated Polyheterocycles. Organic Letters, 2021, 23, 9348-9352.	4.6	13
7	Synthesis of mixed phosphorotrithioates from white phosphorus. Green Chemistry, 2020, 22, 8353-8359.	9.0	29
8	Direct synthesis of phosphorotrithioites and phosphorotrithioates from white phosphorus and thiols. Green Chemistry, 2020, 22, 5303-5309.	9.0	26
9	Copper-Catalyzed Remote C(sp ³)–H Phosphorothiolation of Sulfonamides and Carboxamides in a Multicomponent Reaction. Organic Letters, 2020, 22, 1760-1764.	4.6	54
10	Palladiumâ€Catalyzed Domino Heck/Phosphorylation towards 3,3â€Disubstituted Phosphinonyloxindoles. Advanced Synthesis and Catalysis, 2019, 361, 4961-4965.	4.3	10
11	Copper-Catalyzed Phosphonylation/Trifluoromethylation of $\langle i \rangle N \langle i \rangle -\langle i \rangle P \langle i \rangle -NO \langle sub \rangle 2 \langle sub \rangle -Benzoylacrylamides Coupled with Dearomatization and Denitration. Organic Letters, 2019, 21, 7674-7678.$	4.6	19
12	Iodideâ€Catalyzed Phosphorothiolation of Heteroarenes Using P(O)H Compounds and Elemental Sulfur. Advanced Synthesis and Catalysis, 2019, 361, 3210-3216.	4.3	39
13	Visible-light-mediated direct synthesis of phosphorotrithioates as potent anti-inflammatory agents from white phosphorus. Organic Chemistry Frontiers, 2019, 6, 190-194.	4.5	35
14	Metal-Free Synthesis of \hat{l}_{\pm} -Aminophosphonates from Tertiary Amines and P(O)H Compounds via a Cross-Dehydrogenative Coupling Reaction. Synlett, 2018, 29, 2697-2700.	1.8	10
15	Oxidative C(sp3)–H amidation of tertiary arylamines with nitriles. Organic Chemistry Frontiers, 2018, 5, 2860-2863.	4.5	8
16	Cobalt-Catalyzed Oxidative C(sp3)–H Phosphonylation for α-Aminophosphonates via C(sp3)–H/P(O)–H Coupling. Journal of Organic Chemistry, 2018, 83, 6754-6761.	3.2	46
17	Appraisal of an oligomerization behavior of unprotected carbohydrates induced by phosphorus reagent. Science China Chemistry, 2018, 61, 243-250.	8.2	3
18	Recent Advances of Phosphorus-Centered Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds. Chinese Journal of Organic Chemistry, 2018, 38, 62.	1.3	31

#	Article	IF	CITATIONS
19	Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 589-596.	1.6	72
20	Mn(OAc)3-Mediated Synthesis of 3-Phosphonyldihydrofurans from \hat{l}^2 -Ketophosphonates and Alkenes. Synlett, 2017, 28, 724-728.	1.8	4
21	Copper-Catalyzed Cascade Radical Addition–Cyclization Halogen Atom Transfer between Alkynes and Unsaturated α-Halogenocarbonyls. ACS Catalysis, 2017, 7, 186-190.	11.2	35
22	Direct synthesis of 2-sulfonated 9H-pyrrolo[1,2-a]indoles via Nal-catalyzed cascade radical addition/cyclization/isomerization. Organic Chemistry Frontiers, 2017, 4, 1350-1353.	4.5	40
23	Phosphinodifluoroalkylation of alkynes using P(O)H compounds and ethyl difluoroiodoacetate. Organic Chemistry Frontiers, 2017, 4, 2054-2057.	4.5	24
24	Phosphorothiolation of Aryl Boronic Acids Using P(O)H Compounds and Elemental Sulfur. Organic Letters, 2016, 18, 1266-1269.	4.6	84
25	Copperâ€Catalyzed Cycloaddition between Secondary Phosphine Oxides and Alkynes: Synthesis of Benzophosphole Oxides. Advanced Synthesis and Catalysis, 2016, 358, 138-142.	4.3	57
26	Cascade Phosphinoylation/Cyclization/Isomerization Process for the Synthesis of 2-Phosphinoyl-9 <i>H</i> -pyrrolo[1,2- <i>a</i>]indoles. Organic Letters, 2016, 18, 5712-5715.	4.6	56
27	Synthesis of 3-phosphinoylquinolines via a phosphinoylation–cyclization–aromatization process mediated by tert-butyl hydroperoxide. RSC Advances, 2016, 6, 60922-60925.	3.6	27
28	Synthesis of <i>S</i> -Aryl Phosphorothioates by Copper-Catalyzed Phosphorothiolation of Diaryliodonium and Arenediazonium Salts. Journal of Organic Chemistry, 2016, 81, 5588-5594.	3.2	55
29	Copper-catalyzed cycloaddition between hydrogen phosphonates and activated alkenes: synthesis of phosphonoisoquinolinediones. RSC Advances, 2016, 6, 303-306.	3.6	34
30	A Cascade Phosphinoylation/Cyclization/Desulfonylation Process for the Synthesis of 3-Phosphinoylindoles. Organic Letters, 2016, 18, 1242-1245.	4.6	81
31	<i>tert</i> -Butyl Hydroperoxide Mediated Cascade Synthesis of 3-Arylsulfonylquinolines. Organic Letters, 2016, 18, 1286-1289.	4.6	89
32	Mn($\langle scp \rangle iii \langle scp \rangle$)-mediated phosphonation $\hat{a} \in \hat{a}$ idation of alkenes: a facile synthesis of \hat{a} -azidophosphonates. Chemical Communications, 2015, 51, 11240-11243.	4.1	82
33	Cascade Arylalkylation of Activated Alkenes: Synthesis of Chloro- and Cyano-Containing Oxindoles. Journal of Organic Chemistry, 2015, 80, 2621-2626.	3.2	88
34	Mn(OAc) ₃ -mediated arylation–lactonization of alkenoic acids: synthesis of γ,γ-disubstituted butyrolactones. RSC Advances, 2015, 5, 36167-36170.	3.6	15
35	Copper-catalyzed tandem phosphination–decarboxylation–oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides. Chemical Communications, 2015, 51, 7839-7842.	4.1	79
36	Copper-Catalyzed Phosphonation–Annulation Approaches to the Synthesis of β-Phosphonotetrahydrofurans Involving C–P and C–O Bonds Formation. Journal of Organic Chemistry, 2015, 80, 11398-11406.	3.2	42

#	Article	IF	CITATIONS
37	Mn(OAc) < sub > 3 < /sub > -mediated phosphonation–lactonization of alkenoic acids: synthesis of phosphono-γ-butyrolactones. Chemical Communications, 2015, 51, 1605-1607.	4.1	49
38	Copper-Catalyzed Oxidative Electrophilic Carbofunctionalization of Acrylamides for the Synthesis of Oxindoles. Synlett, 2014, 25, 2009-2012.	1.8	10
39	Synthesis of Diarylmethanes through Palladium-Catalyzed Coupling of Benzylic Phosphates with Arylsilanes. Synlett, 2014, 25, 2928-2932.	1.8	19
40	Synthesis of 6â€Phenanthridinephosphonates via a Radical Phosphonation and Cyclization Process Mediated by Manganese(III) Acetate. Asian Journal of Organic Chemistry, 2014, 3, 691-694.	2.7	33
41	Tetrabutylammonium lodideâ€Catalyzed Phosphorylation of Benzyl CH Bonds <i>via</i> a Crossâ€Dehydrogenative Coupling (CDC) Reaction. Advanced Synthesis and Catalysis, 2014, 356, 3331-3335.	4.3	48
42	Mn(OAc) ₃ -mediated synthesis of \hat{l}^2 -hydroxyphosphonates from P(O) \hat{a} \(\infty + Compounds and alkenes. RSC Advances, 2014, 4, 51776-51779.	3.6	41
43	Experimental and theoretical studies on nickel–zinc-catalyzed cross-coupling of gem-dibromoalkenes with P(O)–H compounds. RSC Advances, 2014, 4, 2322-2326.	3.6	24
44	Catalyst-free synthesis of cycloalkenyl phosphonates. RSC Advances, 2014, 4, 14740-14743.	3.6	5
45	Phosphorus oxychloride as an efficient coupling reagent for the synthesis of esters, amides and peptides under mild conditions. RSC Advances, 2013, 3, 16247-16250.	3.6	30
46	Direct Transformation of Amides into \hat{l}_{\pm} -Amino Phosphonates <i>via</i> a Reductive Phosphination Process. Organic Letters, 2013, 15, 4214-4217.	4.6	72
47	Copper-Catalyzed P-Arylation via Direct Coupling of Diaryliodonium Salts with Phosphorus Nucleophiles at Room Temperature. Journal of Organic Chemistry, 2013, 78, 8176-8183.	3.2	107
48	Copperâ€Catalyzed Synthesis of αâ€Hydroxy Phosphonates from <i>H</i> â€Phosphonates and Alcohols or Ethers. Chemistry - an Asian Journal, 2013, 8, 713-716.	3.3	40
49	KOH-mediated transition metal-free synthesis of imines from alcohols and amines. Green Chemistry, 2012, 14, 2384.	9.0	72
50	Palladium(II) atalyzed Hydration of Alkynylphosphonates to βâ€Ketophosphonates. Advanced Synthesis and Catalysis, 2012, 354, 2427-2432.	4.3	90
51	Copperâ€Catalyzed Synthesis of Alkylphosphonates from <i>H</i> àêPhosphonates and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2012, 354, 2659-2664.	4.3	77
52	Ni(II)/Zn Catalyzed Reductive Coupling of Aryl Halides with Diphenylphosphine Oxide in Water. Organic Letters, 2011, 13, 3478-3481.	4.6	157
53	Chiral phosphoproline-catalyzed asymmetric Michael addition of ketones to nitroolefins: an experimental and theoretical study. Organic and Biomolecular Chemistry, 2011, 9, 6973.	2.8	25
54	Synthesis of αâ€Hydroxy Carboxylic Acids <i>via</i> a Nickel(II)―Catalyzed Hydrogen Transfer Process. Advanced Synthesis and Catalysis, 2011, 353, 1918-1922.	4. 3	45

#	Article	IF	CITATIONS
55	Intermolecular Phosphoryl Transfer of <i>N</i> â€Phosphoryl Amino Acids. European Journal of Organic Chemistry, 2011, 2011, 3220-3228.	2.4	18
56	A Novel and General Method for the Formation of S-Aryl, Se-Aryl, and Te-Aryl Phosphorochalcogenoates. Synthesis, 2009, 2009, 1081-1086.	2.3	18
57	One-Pot Synthesis of 5′-Diaryl Esters and Diamidates of Phosphate, Phosphorothioate, and Phosphoroselenoate Derivatives of AZT and d4T. Synthetic Communications, 2009, 39, 1342-1354.	2.1	2
58	αâ€Aminophosphonates as novel organocatalysts for asymmetric Michael addition of carbonyl compounds to nitroolefins. Chirality, 2008, 20, 833-838.	2.6	37
59	Synthesis and Mechanism Studies on Amide Bond Formation by Hexamethylphosphoramide (HMPA). Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 747-748.	1.6	6
60	Studies on the structure behavior of triphenyldichlorophosphorane in different solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 192-195.	3.9	7