Guo Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni(II)/Zn Catalyzed Reductive Coupling of Aryl Halides with Diphenylphosphine Oxide in Water. Organic Letters, 2011, 13, 3478-3481.	4.6	157
2	Copper-Catalyzed P-Arylation via Direct Coupling of Diaryliodonium Salts with Phosphorus Nucleophiles at Room Temperature. Journal of Organic Chemistry, 2013, 78, 8176-8183.	3.2	107
3	Palladium(II)â€Catalyzed Hydration of Alkynylphosphonates to βâ€Ketophosphonates. Advanced Synthesis and Catalysis, 2012, 354, 2427-2432.	4.3	90
4	<i>tert</i> -Butyl Hydroperoxide Mediated Cascade Synthesis of 3-Arylsulfonylquinolines. Organic Letters, 2016, 18, 1286-1289.	4.6	89
5	Cascade Arylalkylation of Activated Alkenes: Synthesis of Chloro- and Cyano-Containing Oxindoles. Journal of Organic Chemistry, 2015, 80, 2621-2626.	3.2	88
6	Phosphorothiolation of Aryl Boronic Acids Using P(O)H Compounds and Elemental Sulfur. Organic Letters, 2016, 18, 1266-1269.	4.6	84
7	Mn(<scp>iii</scp>)-mediated phosphonation–azidation of alkenes: a facile synthesis of β-azidophosphonates. Chemical Communications, 2015, 51, 11240-11243.	4.1	82
8	A Cascade Phosphinoylation/Cyclization/Desulfonylation Process for the Synthesis of 3-Phosphinoylindoles. Organic Letters, 2016, 18, 1242-1245.	4.6	81
9	Copper-catalyzed tandem phosphination–decarboxylation–oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides. Chemical Communications, 2015, 51, 7839-7842.	4.1	79
10	Copperâ€Catalyzed Synthesis of Alkylphosphonates from <i>H</i> â€Phosphonates and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2012, 354, 2659-2664.	4.3	77
11	KOH-mediated transition metal-free synthesis of imines from alcohols and amines. Green Chemistry, 2012, 14, 2384.	9.0	72
12	Direct Transformation of Amides into α-Amino Phosphonates <i>via</i> a Reductive Phosphination Process. Organic Letters, 2013, 15, 4214-4217.	4.6	72
13	Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 589-596.	1.6	72
14	Copper atalyzed Cycloaddition between Secondary Phosphine Oxides and Alkynes: Synthesis of Benzophosphole Oxides. Advanced Synthesis and Catalysis, 2016, 358, 138-142.	4.3	57
15	Cascade Phosphinoylation/Cyclization/Isomerization Process for the Synthesis of 2-Phosphinoyl-9 <i>H</i> -pyrrolo[1,2- <i>a</i>]indoles. Organic Letters, 2016, 18, 5712-5715.	4.6	56
16	Synthesis of <i>S</i> -Aryl Phosphorothioates by Copper-Catalyzed Phosphorothiolation of Diaryliodonium and Arenediazonium Salts. Journal of Organic Chemistry, 2016, 81, 5588-5594.	3.2	55
17	Copper-Catalyzed Remote C(sp ³)–H Phosphorothiolation of Sulfonamides and Carboxamides in a Multicomponent Reaction. Organic Letters, 2020, 22, 1760-1764.	4.6	54
18	Mn(OAc) ₃ -mediated phosphonation–lactonization of alkenoic acids: synthesis of phosphono-Î3-butyrolactones. Chemical Communications, 2015, 51, 1605-1607.	4.1	49

GUO TANG

#	Article	IF	CITATIONS
19	Tetrabutylammonium Iodideâ€Catalyzed Phosphorylation of Benzyl CH Bonds <i>via</i> a Crossâ€Dehydrogenative Coupling (CDC) Reaction. Advanced Synthesis and Catalysis, 2014, 356, 3331-3335.	4.3	48
20	Cobalt-Catalyzed Oxidative C(sp3)–H Phosphonylation for α-Aminophosphonates via C(sp3)–H/P(O)–H Coupling. Journal of Organic Chemistry, 2018, 83, 6754-6761.	3.2	46
21	Synthesis of αâ€Hydroxy Carboxylic Acids <i>via</i> a Nickel(II)―Catalyzed Hydrogen Transfer Process. Advanced Synthesis and Catalysis, 2011, 353, 1918-1922.	4.3	45
22	Copper-Catalyzed Phosphonation–Annulation Approaches to the Synthesis of β-Phosphonotetrahydrofurans Involving C–P and C–O Bonds Formation. Journal of Organic Chemistry, 2015, 80, 11398-11406.	3.2	42
23	Mn(OAc) ₃ -mediated synthesis of β-hydroxyphosphonates from P(O)–H compounds and alkenes. RSC Advances, 2014, 4, 51776-51779.	3.6	41
24	Copperâ€Catalyzed Synthesis of αâ€Hydroxy Phosphonates from <i>H</i> â€Phosphonates and Alcohols or Ethers. Chemistry - an Asian Journal, 2013, 8, 713-716.	3.3	40
25	Direct synthesis of 2-sulfonated 9H-pyrrolo[1,2-a]indoles via Nal-catalyzed cascade radical addition/cyclization/isomerization. Organic Chemistry Frontiers, 2017, 4, 1350-1353.	4.5	40
26	Iodideâ€Catalyzed Phosphorothiolation of Heteroarenes Using P(O)H Compounds and Elemental Sulfur. Advanced Synthesis and Catalysis, 2019, 361, 3210-3216.	4.3	39
27	αâ€Aminophosphonates as novel organocatalysts for asymmetric Michael addition of carbonyl compounds to nitroolefins. Chirality, 2008, 20, 833-838.	2.6	37
28	Copper-Catalyzed Cascade Radical Addition–Cyclization Halogen Atom Transfer between Alkynes and Unsaturated α-Halogenocarbonyls. ACS Catalysis, 2017, 7, 186-190.	11.2	35
29	Visible-light-mediated direct synthesis of phosphorotrithioates as potent anti-inflammatory agents from white phosphorus. Organic Chemistry Frontiers, 2019, 6, 190-194.	4.5	35
30	Copper-catalyzed cycloaddition between hydrogen phosphonates and activated alkenes: synthesis of phosphonoisoquinolinediones. RSC Advances, 2016, 6, 303-306.	3.6	34
31	Synthesis of 6â€Phenanthridinephosphonates via a Radical Phosphonation and Cyclization Process Mediated by Manganese(III) Acetate. Asian Journal of Organic Chemistry, 2014, 3, 691-694.	2.7	33
32	Recent Advances of Phosphorus-Centered Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds. Chinese Journal of Organic Chemistry, 2018, 38, 62.	1.3	31
33	Phosphorus oxychloride as an efficient coupling reagent for the synthesis of esters, amides and peptides under mild conditions. RSC Advances, 2013, 3, 16247-16250.	3.6	30
34	Synthesis of mixed phosphorotrithioates from white phosphorus. Green Chemistry, 2020, 22, 8353-8359.	9.0	29
35	Synthesis of 3-phosphinoylquinolines via a phosphinoylation–cyclization–aromatization process mediated by tert-butyl hydroperoxide. RSC Advances, 2016, 6, 60922-60925.	3.6	27
36	Direct synthesis of phosphorotrithioites and phosphorotrithioates from white phosphorus and thiols. Green Chemistry, 2020, 22, 5303-5309.	9.0	26

GUO TANG

#	Article	IF	CITATIONS
37	Chiral phosphoproline-catalyzed asymmetric Michael addition of ketones to nitroolefins: an experimental and theoretical study. Organic and Biomolecular Chemistry, 2011, 9, 6973.	2.8	25
38	Experimental and theoretical studies on nickel–zinc-catalyzed cross-coupling of gem-dibromoalkenes with P(O)–H compounds. RSC Advances, 2014, 4, 2322-2326.	3.6	24
39	Phosphinodifluoroalkylation of alkynes using P(O)H compounds and ethyl difluoroiodoacetate. Organic Chemistry Frontiers, 2017, 4, 2054-2057.	4.5	24
40	Visible-light-induced denitrogenative phosphorylation of benzotriazinones: a metal- and additive-free method for accessing <i>ortho</i> -phosphorylated benzamide derivatives. Green Chemistry, 2021, 23, 296-301.	9.0	21
41	Synthesis of Diarylmethanes through Palladium-Catalyzed Coupling of Benzylic Phosphates with Arylsilanes. Synlett, 2014, 25, 2928-2932.	1.8	19
42	Copper-Catalyzed Phosphonylation/Trifluoromethylation of <i>N</i> - <i>p</i> -NO ₂ -Benzoylacrylamides Coupled with Dearomatization and Denitration. Organic Letters, 2019, 21, 7674-7678.	4.6	19
43	Diphenyl Diselenide-Catalyzed Synthesis of Triaryl Phosphites and Triaryl Phosphates from White Phosphorus. Organic Letters, 2021, 23, 5158-5163.	4.6	19
44	A Novel and General Method for the Formation of S-Aryl, Se-Aryl, and Te-Aryl Phosphorochalcogenoates. Synthesis, 2009, 2009, 1081-1086.	2.3	18
45	Intermolecular Phosphoryl Transfer of <i>N</i> â€Phosphoryl Amino Acids. European Journal of Organic Chemistry, 2011, 2011, 3220-3228.	2.4	18
46	Mn(OAc) ₃ -mediated arylation–lactonization of alkenoic acids: synthesis of γ,γ-disubstituted butyrolactones. RSC Advances, 2015, 5, 36167-36170.	3.6	15
47	Synthesis of Î'-phosphorothiolated alcohols by photoredox/copper catalyzed remote C(sp ³)–H phosphorothiolation of <i>N</i> -alkoxypyridinium salts. Organic Chemistry Frontiers, 2021, 8, 6845-6850.	4.5	14
48	Photoredox/copper-catalyzed coupling of terminal alkynes with P(O)SH compounds leading to alkynyl phosphorothioates. Green Chemistry, 2022, 24, 4484-4489.	9.0	14
49	Photoinduced Phosphorylation/Cyclization of Cyanoaromatics for Divergent Access to Mono- and Diphosphorylated Polyheterocycles. Organic Letters, 2021, 23, 9348-9352.	4.6	13
50	Copper-Catalyzed Oxidative Electrophilic Carbofunctionalization of Acrylamides for the Synthesis of Oxindoles. Synlett, 2014, 25, 2009-2012.	1.8	10
51	Metal-Free Synthesis of α-Aminophosphonates from Tertiary Amines and P(O)H Compounds via a Cross-Dehydrogenative Coupling Reaction. Synlett, 2018, 29, 2697-2700.	1.8	10
52	Palladiumâ€Catalyzed Domino Heck/Phosphorylation towards 3,3â€Disubstituted Phosphinonyloxindoles. Advanced Synthesis and Catalysis, 2019, 361, 4961-4965.	4.3	10
53	Oxidative C(sp3)–H amidation of tertiary arylamines with nitriles. Organic Chemistry Frontiers, 2018, 5, 2860-2863.	4.5	8
54	Formation of Nâ^'P(O)â^'S Bonds from White Phosphorus via a Fourâ€Component Reaction. Advanced Synthesis and Catalysis, 2022, 364, 2221-2226.	4.3	8

GUO TANG

#	Article	IF	CITATIONS
55	Studies on the structure behavior of triphenyldichlorophosphorane in different solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 192-195.	3.9	7
56	Synthesis and Mechanism Studies on Amide Bond Formation by Hexamethylphosphoramide (HMPA). Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 747-748.	1.6	6
57	Catalyst-free synthesis of cycloalkenyl phosphonates. RSC Advances, 2014, 4, 14740-14743.	3.6	5
58	Mn(OAc)3-Mediated Synthesis of 3-Phosphonyldihydrofurans from β-Ketophosphonates and Alkenes. Synlett, 2017, 28, 724-728.	1.8	4
59	Appraisal of an oligomerization behavior of unprotected carbohydrates induced by phosphorus reagent. Science China Chemistry, 2018, 61, 243-250.	8.2	3
60	One-Pot Synthesis of 5′-Diaryl Esters and Diamidates of Phosphate, Phosphorothioate, and Phosphoroselenoate Derivatives of AZT and d4T. Synthetic Communications, 2009, 39, 1342-1354.	2.1	2