Harikrishnan Santhanam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable thermal energy storage technologies for buildings: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 2394-2433.	8.2	254
2	Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochimica Acta, 2012, 533, 46-55.	1.2	172
3	Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochimica Acta, 2013, 565, 137-145.	1.2	129
4	Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 2012, 39, 375-387.	4.3	107
5	Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Conversion and Management, 2014, 86, 864-872.	4.4	83
6	Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy and Buildings, 2010, 42, 1353-1360.	3.1	72
7	Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. Journal of Mechanical Science and Technology, 2017, 31, 4903-4910.	0.7	66
8	Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1563-1571.	2.0	47
9	Review on Heat Transfer Enhancement of Phase Change Materials (PCMs). Materials Today: Proceedings, 2018, 5, 14423-14431.	0.9	47
10	A Review on Factors Influencing the Mismatch Losses in Solar Photovoltaic System. International Journal of Photoenergy, 2022, 2022, 1-27.	1.4	32
11	Preparation and Thermophysical Properties of Water–Glycerol Mixture-Based CuO Nanofluids as PCM for Cooling Applications. IEEE Nanotechnology Magazine, 2013, 12, 629-635.	1.1	31
12	Experimental investigation on the effectiveness of MHTHS using different metal oxide-based nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1251-1260.	2.0	25
13	Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage. Materials Research Express, 2019, 6, 105051.	0.8	21
14	Experimental Investigation of Improved Thermal Characteristics of SiO2/myristic acid Nanofluid as Phase Change Material (PCM). Materials Today: Proceedings, 2019, 9, 397-409.	0.9	20
15	Improved thermal energy storage behavior of a novel nanofluid as phase change material (PCM). Materials Today: Proceedings, 2019, 9, 410-421.	0.9	20
16	Improved thermal characteristics of Ag nanoparticles dispersed myristic acid as composite for low temperature thermal energy storage. Materials Research Express, 2019, 6, 085066.	0.8	17
17	The effects of nano-additives on exhaust emissions and toxicity on mankind. Materials Today: Proceedings, 2020, 22, 1181-1185.	0.9	17
18	Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material. Materials Today: Proceedings, 2018, 5, 14618-14627.	0.9	15

#	Article	IF	CITATIONS
19	Improved Performance of Composite Phase Change Material for Thermal Energy Storage. Materials Today: Proceedings, 2018, 5, 14215-14224.	0.9	14
20	Experimental investigation of parallel type -evacuated tube solar collector using nanofluids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-13.	1.2	11
21	The Enhanced Energy Density of rGO/TiO2 Based Nanocomposite as Electrode Material for Supercapacitor. Electronics (Switzerland), 2022, 11, 1792.	1.8	11
22	Machinability Studies on CNC Turning of PH Stainless Steel with Coated Inserts. Materials Today: Proceedings, 2018, 5, 14520-14525.	0.9	8
23	Experimental Investigation of Improved Thermal Characteristics of Al2O3/Barium Hydroxide Octa Hydrate as Phase Change Materials (PCMs). Materials Today: Proceedings, 2018, 5, 14440-14447.	0.9	7
24	Preparation and enhanced capacitive behavior of Ni-ZnO nanocomposite as electrode for supercapacitor. Materials Today: Proceedings, 2019, 9, 361-370.	0.9	7
25	Experimental investigation on the heat transfer performance of MHTHS using ethylene glycol-based nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 143, 61-71.	2.0	7