
## Millard H Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4477821/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF            | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 1  | Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunnelling. Nature Chemistry, 2019, 11, 744-749.                                                                                                      | 6.6           | 34        |
| 2  | Accurate characterization of the lowest triplet potential energy surface of SO2 with a coupled cluster method. Journal of Chemical Physics, 2019, 150, 144303.                                                                                                    | 1.2           | 2         |
| 3  | Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1 <i>D</i> ) atoms in collisions with Kr. Journal of Chemical Physics, 2018, 148, 124311.                                                                       | 1.2           | 12        |
| 4  | Photoabsorption Assignments for the C̃1B2 ↕X̃1A1 Vibronic Transitions of SO2, Using New Ab Initio<br>Potential Energy and Transition Dipole Surfaces. Journal of Physical Chemistry A, 2017, 121, 1012-1021.                                                      | 1.1           | 18        |
| 5  | Final State Resolved Quantum Predissociation Dynamics of<br>SO <sub>2</sub> ( <i>Cìƒ</i> <sup>1</sup> <i>B</i> <sub><b>2</b></sub> ) and Its Isotopomers via a<br>Crossing with a Singlet Repulsive State. Journal of Physical Chemistry A, 2017, 121, 4930-4938. | 1.1           | 9         |
| 6  | First-principles C band absorption spectra of SO <sub>2</sub> and its isotopologues. Journal of Chemical Physics, 2017, 146, 154305.                                                                                                                              | 1.2           | 7         |
| 7  | The interaction of NO(X2Î) with H2: <i>Ab initio</i> potential energy surfaces and bound states.<br>Journal of Chemical Physics, 2017, 146, 114301.                                                                                                               | 1.2           | 17        |
| 8  | Accurate transport properties for O(3 <i>P</i> )–H and O(3 <i>P</i> )–H2. Journal of Chemical Physics, 2016, 145, 164309.                                                                                                                                         | 1.2           | 11        |
| 9  | New <i>ab initio</i> adiabatic potential energy surfaces and bound state calculations for the singlet ground Xlƒ1A1 and excited Clƒ1B2(21A′) states of SO2. Journal of Chemical Physics, 2016, 144, 174301.                                                       | 1.2           | 17        |
| 10 | Chemical Control and Spectral Fingerprints of Electronic Coupling in Carbon Nanostructures.<br>Journal of Physical Chemistry C, 2016, 120, 29476-29483.                                                                                                           | 1.5           | 2         |
| 11 | Publisher's Note: "New <i>ab initio</i> adiabatic potential energy surfaces and bound state calculations for the singlet ground Xlf1A1 and excited Clf1B2(21A′) states of SO2―[J. Chem. Phys. 144, 17 (2016)]. Journal of Chemical Physics, 2016, 144, 209901.    | 43 <b>Ω</b> ⊉ | 0         |
| 12 | Resonances in rotationally inelastic scattering of NH3 and ND3 with H2. Journal of Chemical Physics, 2015, 143, 044312.                                                                                                                                           | 1.2           | 34        |
| 13 | Theoretical investigation of the dynamics of O(1 <i>D</i> →3 <i>P</i> ) electronic quenching by collision with Xe. Journal of Chemical Physics, 2015, 143, 054306.                                                                                                | 1.2           | 7         |
| 14 | Electronic quenching of O(1D) by Xe: Oscillations in the product angular distribution and their dependence on collision energy. Journal of Chemical Physics, 2015, 143, 054307.                                                                                   | 1.2           | 4         |
| 15 | State-Specific Collision Dynamics of Molecular Super Rotors with Oriented Angular Momentum.<br>Journal of Physical Chemistry A, 2015, 119, 12471-12479.                                                                                                           | 1.1           | 14        |
| 16 | A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces. Journal of Chemical Physics, 2015, 142, 034108.                                                                                          | 1.2           | 1         |
| 17 | Spectroscopic observation of resonances in the F + H < sub>2 reaction. Science, 2015, 349, 510-513.                                                                                                                                                               | 6.0           | 98        |
| 18 | Rotationally inelastic scattering of OH by molecular hydrogen: Theory and experiment. Journal of<br>Chemical Physics, 2015, 142, 204310.                                                                                                                          | 1.2           | 34        |

| #  | Article                                                                                                                                                                                        | IF        | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 19 | Theoretical investigation of the relaxation of the bending mode of \${m CH}_2(ilde{X})\$ CH 2(X̃) by collisions with helium. Journal of Chemical Physics, 2014, 141, 214305.                   | 1.2       | 2              |
| 20 | Collision dynamics of symmetric top molecules: A comparison of the rotationally inelastic scattering of CD3 and ND3 with He. Journal of Chemical Physics, 2014, 140, 134308.                   | 1.2       | 10             |
| 21 | A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions. Journal of Chemical Physics, 2014, 141, 024118.                                | 1.2       | 4              |
| 22 | The interaction of OH( <i>X</i> 2Î) with H2: <i>Ab initio</i> potential energy surfaces and bound states.<br>Journal of Chemical Physics, 2014, 141, 174309.                                   | 1.2       | 26             |
| 23 | Transport Properties for Systems with Deep Potential Wells: H + O <sub>2</sub> . Journal of Physical Chemistry A, 2014, 118, 11935-11942.                                                      | 1.1       | 13             |
| 24 | Theoretical investigation of intersystem crossing between the aÌfA11 and XÌfB13 states of CH2 induced by collisions with helium. Journal of Chemical Physics, 2014, 141, 064312.               | 1.2       | 4              |
| 25 | The rate of the FÂ+ÂH2 reaction at very low temperatures. Nature Chemistry, 2014, 6, 141-145.                                                                                                  | 6.6       | 105            |
| 26 | State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface. Physical Chemistry Chemical Physics, 2013, 15, 15347. | 1.3       | 15             |
| 27 | Rotationally inelastic scattering of CD3 and CH3 with He: comparison of velocity map-imaging data with quantum scattering calculations. Chemical Science, 2013, 4, 4199.                       | 3.7       | 16             |
| 28 | Exact quantum scattering calculations of transport properties: CH2( $\frac{X}^3Xi_f3, B1,) Tj ETQq0 0 0 rg$                                                                                    | BT/Overlo | ock 10 Tf 50 3 |
| 29 | Exact quantum scattering calculations of transport properties for the H2O–H system. Journal of Chemical Physics, 2013, 139, 194309.                                                            | 1.2       | 16             |
| 30 | Uncloaking the Quantum Nature of Inelastic Molecular Collisions. Science, 2013, 341, 1076-1077.                                                                                                | 6.0       | 11             |
| 31 | Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium.<br>Journal of Chemical Physics, 2013, 138, 104317.                                            | 1.2       | 10             |
| 32 | Theoretical investigation of rotationally inelastic collisions of CH2( $XIf$ ) with helium. Journal of Chemical Physics, 2012, 136, 224306.                                                    | 1.2       | 20             |
| 33 | Resonances in rotationally inelastic scattering of OH( <i>X</i> 2î) with helium and neon. Journal of Chemical Physics, 2012, 136, 144308.                                                      | 1.2       | 24             |
| 34 | Exact quantum scattering calculation of transport properties for free radicals:<br>OH( <i>X</i> 2Î)–helium. Journal of Chemical Physics, 2012, 137, 094306.                                    | 1.2       | 11             |
| 35 | Spin-orbit quenching of Cl(2P1/2) by H2. Journal of Chemical Physics, 2012, 136, 124312.                                                                                                       | 1.2       | 4              |
| 36 | Theoretical investigation of rotationally inelastic collisions of the methyl radical with helium.<br>Journal of Chemical Physics, 2011, 135, 064306.                                           | 1.2       | 20             |

| #  | Article                                                                                                                                                                                                                                                                                                                     | IF                       | CITATIONS   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|
| 37 | Communication: Non-adiabatic coupling and resonances in the F + H2 reaction at low energies. Journal of Chemical Physics, 2011, 134, 231101.                                                                                                                                                                                | 1.2                      | 45          |
| 38 | Chemical Kinetics Under Test. Science, 2011, 331, 411-412.                                                                                                                                                                                                                                                                  | 6.0                      | 9           |
| 39 | Theoretical investigation of rotationally inelastic collisions of CH2(ã) with helium. Journal of Chemical Physics, 2011, 134, 154307.                                                                                                                                                                                       | 1.2                      | 27          |
| 40 | Depolarization in H <sub>2</sub> O–He collisions. Molecular Physics, 2010, 108, 1159-1169.                                                                                                                                                                                                                                  | 0.8                      | 13          |
| 41 | Low-energy inelastic collisions of OH radicals with He atoms and <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mrow><mml:msub><mml:mi<br>mathvariant="normal"&gt;D<mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mi<br></mml:msub>Physical Review A. 2010. 82</mml:mrow></mml:math<br> | v> <sup>1.0</sup> /mml:r | nath>molecu |
| 42 | Time-dependent wavepacket investigation of state-to-state reactive scattering of Cl with <i>para</i> -H2 including the open-shell character of the Cl atom. Journal of Chemical Physics, 2010, 132, 034308.                                                                                                                 | 1.2                      | 38          |
| 43 | State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms. Physical Chemistry<br>Chemical Physics, 2010, 12, 10660.                                                                                                                                                                                | 1.3                      | 57          |
| 44 | Joint Experimentalâ^'Theoretical Investigation of the Lower Bound States of the NO(X <sup>2</sup> Î)-Kr<br>Complex. Journal of Physical Chemistry A, 2009, 113, 7366-7375.                                                                                                                                                  | 1.1                      | 22          |
| 45 | Tensor cross sections and collisional depolarization of OH(X 2Î) in collisions with helium. Journal of Chemical Physics, 2009, 130, 164315.                                                                                                                                                                                 | 1.2                      | 40          |
| 46 | Nonadiabatic Interactions in the Cl + H <sub>2</sub> Reaction Probed by ClH <sub>2</sub> <sup>-</sup> and ClD <sub>2</sub> <sup>-</sup> Photoelectron Imaging. Science, 2008, 319, 72-75.                                                                                                                                   | 6.0                      | 74          |
| 47 | The Extent of Non–Born-Oppenheimer Coupling in the Reaction of Cl( <sup>2</sup> <i>P</i> ) with <i>para-</i> H <sub>2</sub> . Science, 2008, 322, 573-576.                                                                                                                                                                  | 6.0                      | 95          |
| 48 | Nonadiabatic effects in the photodetachment of ClH2â^'. Journal of Chemical Physics, 2008, 128, 084312.                                                                                                                                                                                                                     | 1.2                      | 10          |
| 49 | Role of van der Waals resonances in the vibrational relaxation of HF by collisions with H atoms.<br>Journal of Chemical Physics, 2007, 127, 114301.                                                                                                                                                                         | 1.2                      | 21          |
| 50 | Breakdown of the Born-Oppenheimer Approximation in the F+ <i>o</i> -D <sub>2</sub> → DF + D<br>Reaction. Science, 2007, 317, 1061-1064.                                                                                                                                                                                     | 6.0                      | 149         |
| 51 | An ab initio investigation of the O(3P)–H2(1Σ+g) van der Waals well. Physical Chemistry Chemical<br>Physics, 2006, 8, 4420-4426.                                                                                                                                                                                            | 1.3                      | 17          |
| 52 | Product multiplet branching in the O(1D)+H2→OH(2Î)+H reaction. Journal of Chemical Physics, 2004, 121, 5221-5235.                                                                                                                                                                                                           | 1.2                      | 69          |
| 53 | Angular distributions for the F+H2→HF+H reaction: The role of the F spin-orbit excited state and comparison with molecular beam experiments. Journal of Chemical Physics, 2004, 121, 5812-5820.                                                                                                                             | 1.2                      | 24          |
| 54 | Reactivity of the F spin–orbit excited state in the F + HD reaction: Product translational and rotational energy distributions. Physical Chemistry Chemical Physics, 2004, 6, 5018-5025.                                                                                                                                    | 1.3                      | 12          |

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Details and consequences of the nonadiabatic coupling in the Cl(2P) + H2reaction. Faraday Discussions, 2004, 127, 59-72.                                                                                                                                                                                                   | 1.6 | 48        |
| 56 | A simple theoretical study of the ClH2? photoelectron spectrum. Physical Chemistry Chemical Physics, 2004, 6, 4984.                                                                                                                                                                                                        | 1.3 | 15        |
| 57 | The dynamics of the prototype abstraction reaction Cl(2P3/2,1/2)+ H2: A comparison of crossed molecular beam experiments with exact quantum scattering calculations on coupled ab initio potential energy surfaces. Physical Chemistry Chemical Physics, 2004, 6, 5007.                                                    | 1.3 | 36        |
| 58 | Experimental and theoretical investigation of the AlH b 3Σâ^'–a 3Î electronic transition. Journal of<br>Chemical Physics, 2003, 118, 10477-10484.                                                                                                                                                                          | 1.2 | 9         |
| 59 | Theoretical investigation of the lower bend-stretch states of the Clâ <sup>~</sup> H2 anion complex and its isotopomers. Journal of Chemical Physics, 2003, 118, 9637-9642.                                                                                                                                                | 1.2 | 30        |
| 60 | An ab initio based model for the simulation of multiple 2P atoms embedded in a cluster of spherical<br>ligands, with application to Al in solid para-hydrogen. Journal of Chemical Physics, 2002, 117, 5311-5318.                                                                                                          | 1.2 | 2         |
| 61 | Laser spectroscopic study of the SiAr van der Waals complex. Journal of Chemical Physics, 2002, 116, 9239-9248.                                                                                                                                                                                                            | 1.2 | 9         |
| 62 | Theoretical Study of the Validity of the Born-Oppenheimer Approximation in the Cl + H2rightarrow<br>HCl + H Reaction. Science, 2002, 296, 715-718.                                                                                                                                                                         | 6.0 | 138       |
| 63 | Experimental and Theoretical Study of State-Resolved Electronically Inelastic Collisions of Highly<br>Rotationally Excited CN(A2Î) with Argon and Helium:  The Role of Gateway Levels. Journal of Physical<br>Chemistry A, 2002, 106, 8345-8354.                                                                           | 1.1 | 12        |
| 64 | Electronic spectroscopy and excited state dynamics of the Al–H2/D2 complex. Faraday Discussions, 2001, 118, 387-404.                                                                                                                                                                                                       | 1.6 | 13        |
| 65 | Fully State-Resolved Differential Cross Sections for the Inelastic Scattering of the Open-Shell NO<br>Molecule by Ar. Science, 2001, 294, 832-834.                                                                                                                                                                         | 6.0 | 108       |
| 66 | Experimental and theoretical investigation of the rotational structure of the Al–H2/D2 complex.<br>Journal of Chemical Physics, 2001, 114, 8938-8947.                                                                                                                                                                      | 1.2 | 15        |
| 67 | Experimental and theoretical study of ĥ-doublet resolved rotationally inelastic collisions of highly rotationally excited CH(A 2Δ,v=0) with Ar. Journal of Chemical Physics, 2001, 115, 800-809.                                                                                                                           | 1.2 | 12        |
| 68 | State-resolved rotationally inelastic collisions of highly rotationally excited CN(A 2Î) with helium:<br>Influence of the interaction potential. Journal of Chemical Physics, 2001, 115, 8393-8402.                                                                                                                        | 1.2 | 28        |
| 69 | State-to-state rate coefficients for transfer from the rotational levels J = 7.5, 20.5, 31.5 and 40.5 in NO(X $2\hat{1}/2$ , v = 2) in collisions with He, Ar and N2 and for J=7.5, 20.5 and 31.5 in collisions with NO: comparisons between experiment and theory. Physical Chemistry Chemical Physics, 2000, 2, 473-479. | 1.3 | 18        |
| 70 | An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. Journal of Chemical Physics, 2000, 113, 11084-11100.                                                                                                                                            | 1.2 | 238       |
| 71 | A joint theoretical–experimental investigation of the lower bound states of the NO(X 2Î)–Ar complex.<br>Journal of Chemical Physics, 2000, 113, 73-85.                                                                                                                                                                     | 1.2 | 31        |
| 72 | Experimental and theoretical study of the electronic spectrum of the BAr2 complex: Transition to the excited valence B(2s2p2 2D) state. Journal of Chemical Physics, 2000, 112, 5037-5043.                                                                                                                                 | 1.2 | 14        |

| #  | Article                                                                                                                                                                                                                           | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 73 | Potential energy surfaces for and energetics of the weakly-bound Al–H2 and B–H2 complexes. Journal of Chemical Physics, 2000, 112, 5722-5730.                                                                                     | 1.2       | 31        |
| 74 | Experimental and theoretical study of rotationally inelastic collisions of highly rotationally excited CN(A 2Î) with Ar. Journal of Chemical Physics, 2000, 112, 4474-4484.                                                       | 1.2       | 36        |
| 75 | A new, fully ab initio investigation of the NO(X 2Î)Ar system. I. Potential energy surfaces and inelastic<br>scattering. Journal of Chemical Physics, 1999, 111, 7426-7434.                                                       | 1.2       | 109       |
| 76 | A new, fully ab initio investigation of the ArNO(X 2Î) system. II. Bound states of the Ar–NO complex.<br>Journal of Chemical Physics, 1999, 111, 7435-7439.                                                                       | 1.2       | 36        |
| 77 | A combined experimental and theoretical study of rotational energy transfer in collisions between NO(X 2Î1/2, v=3,J) and He, Ar and N2 at temperatures down to 7 K. Journal of Chemical Physics, 1998, 109, 3882-3897.            | 1.2       | 74        |
| 78 | Spin–orbit effects in the reaction of F(2P) with H2. Journal of Chemical Physics, 1998, 109, 5710-5713.                                                                                                                           | 1.2       | 131       |
| 79 | Theoretical investigation of weakly-bound complexes of O(3P) with H2. Journal of Chemical Physics, 1998, 108, 4467-4477.                                                                                                          | 1.2       | 35        |
| 80 | Experimental and theoretical study of the AlNe complex. Journal of Chemical Physics, 1998, 108, 3522-3530.                                                                                                                        | 1.2       | 26        |
| 81 | Inelastic collisions of fine structure and ĥ-doublet resolved rotational states of PH(A 3Î, v=0) with<br>helium. Journal of Chemical Physics, 1997, 106, 7642-7653.                                                               | 1.2       | 18        |
| 82 | A collaborative theoretical and experimental study of the structure and electronic excitation spectrum of the Bar and Bar2 complexes. Journal of Chemical Physics, 1997, 106, 6320-6331.                                          | 1.2       | 33        |
| 83 | Adiabatic and diabatic potential-energy surfaces of the CN(X 2Σ+,A 2Ì)Ne complex and nonadiabatic<br>predissociation dynamics. Journal of Chemical Physics, 1997, 107, 7148-7162.                                                 | 1.2       | 27        |
| 84 | Stateâ€resolved inelastic collisions of single rotational, fineâ€structure, and Λ doublet levels of NH(A 3Î)<br>with helium: A combined experimental and theoretical study. Journal of Chemical Physics, 1996, 104,<br>1325-1337. | 1.2       | 28        |
| 85 | The rotational relaxation of NH(c 1Î) in collisions with Ar: A combined theoretical and experimental investigation. Journal of Chemical Physics, 1995, 102, 4069-4083.                                                            | 1.2       | 28        |
| 86 | Theoretical study of the interaction of AlH(X 1Σ+,A 1Î) with Ar: Potential energy surfaces and<br>bend–stretch levels of the ArAlH(X,A) van der Waals complex. Journal of Chemical Physics, 1995, 102,<br>2413-2425.              | 1.2       | 23        |
| 87 | Fullyab initioinvestigation of bound and predissociating states of the NeOH(X) complex. Journal of Chemical Physics, 1995, 103, 3400-3417.                                                                                        | 1.2       | 27        |
| 88 | Ab initio potential energy surfaces and quantum scattering studies of NO(X 2Î) with He: ĥâ€doublet<br>resolved rotational and electronic fineâ€structure transitions. Journal of Chemical Physics, 1995, 103,<br>6973-6983.       | 1.2       | 53        |
| 89 | Experimental investigation of weakly bound B(2p,3s)–H2/D2complexes through laser fluorescence excitation spectroscopy. Journal of Chemical Physics, 1995, 103, 7966-7974.                                                         | 1.2       | 28        |
| 90 | Experimental and theoretical study of the B–Ne nonbonding interaction: The freeâ€boundB 2Σ+–X<br>electronic transition. Journal of Chemical Physics, 1995, 103, 2779-2786.                                                        | 2Î<br>1.2 | 36        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Theoretical investigation of weaklyâ€bound complexes of B with H2. Journal of Chemical Physics, 1995, 103, 7956-7965.                                                                                                                                  | 1.2 | 44        |
| 92  | Theoretical Study of Bound States of Ar-NO. The Journal of Physical Chemistry, 1994, 98, 1073-1079.                                                                                                                                                    | 2.9 | 28        |
| 93  | Theoretical studies of He(1S)+CH(X 2Î). II. Fullyabinitiocross sections for the inelastic scattering and comparison with experiment. Journal of Chemical Physics, 1994, 100, 1338-1349.                                                                | 1.2 | 23        |
| 94  | Potential energy surfaces for the interaction of BH(X 1Σ+,A 1Î) with Ar and a theoretical investigation of<br>the stretchâ€bend levels of the ArBH(A) van der Waals molecule. Journal of Chemical Physics, 1994, 101,<br>2887-2902.                    | 1.2 | 67        |
| 95  | Flux redistribution during the photodissociation of CINO in theT1state. Journal of Chemical Physics, 1994, 101, 4722-4734.                                                                                                                             | 1.2 | 17        |
| 96  | Potential energy surfaces for the interaction of CH(X 2Î,B 2Σâ^') with Ar and an assignment of the<br>stretchâ€bend levels of the ArCH(B) van der Waals molecule. Journal of Chemical Physics, 1994, 101,<br>4547-4560.                                | 1.2 | 55        |
| 97  | The use of the current density in the analysis of molecular photodissociation. Journal of Chemical Physics, 1994, 101, 8663-8673.                                                                                                                      | 1.2 | 8         |
| 98  | On the generation of preferential Λâ€doublet populations in the collisional relaxation of highly rotationally excited CH(X 2Î). Journal of Chemical Physics, 1994, 101, 7468-7479.                                                                     | 1.2 | 36        |
| 99  | Scattering of NH3 by ortho―and paraâ€H2: Expansion of the potential and collisional propensity rules.<br>Journal of Chemical Physics, 1993, 98, 4662-4671.                                                                                             | 1.2 | 38        |
| 100 | A joint experimental and theoretical study of A 2Î→X 2Σ+ electronic energy transfer in the CN molecule<br>induced by collisions with helium. Journal of Chemical Physics, 1993, 98, 8580-8592.                                                         | 1.2 | 52        |
| 101 | Differential and integral cross sections for the inelastic scattering of NO (X 2Î) by Ar based on a new ab initio potential energy surface. Journal of Chemical Physics, 1993, 99, 7725-7738.                                                          | 1.2 | 99        |
| 102 | Spin–orbit branching in the photofragmentation of HCl. Journal of Chemical Physics, 1993, 99, 1752-1764.                                                                                                                                               | 1.2 | 114       |
| 103 | Adiabatic and approximate diabatic potential energy surfaces for the BH2van der Waals molecule.<br>Journal of Chemical Physics, 1993, 99, 6014-6026.                                                                                                   | 1.2 | 73        |
| 104 | Adiabatic representations for the study of flux redistribution during photodissociation involving coupled electronic states: The effect of vibrational excitation on the photofragmentation of CH3I. Journal of Chemical Physics, 1993, 98, 6196-6207. | 1.2 | 21        |
| 105 | Quantum flux redistribution during molecular photodissociation. Journal of Chemical Physics, 1992, 97, 2527-2535.                                                                                                                                      | 1.2 | 47        |
| 106 | The study of flux redistribution during molecular photodissociation: Adiabatic and diabatic analyses and application to the dissociation of CH3I. Journal of Chemical Physics, 1992, 97, 4836-4845.                                                    | 1.2 | 31        |
| 107 | Quantum flux studies of the mechanism of Ca(4s5p 1P)→Ca(4s5p 3P) collisions. Journal of Chemical<br>Physics, 1992, 96, 6672-6680.                                                                                                                      | 1.2 | 18        |
| 108 | Potential energy hypersurfaces for the interaction of NO with the Ag(111) surface. Journal of Chemical Physics, 1991, 94, 8454-8467.                                                                                                                   | 1.2 | 17        |

| #   | Article                                                                                                                                                                                                            | IF                   | CITATIONS        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| 109 | Collisions of NO(X 2Î) with a Ag(111) surface: New quantum scattering studies based on a semiempirical potential energy surface. Journal of Chemical Physics, 1991, 94, 8468-8478.                                 | 1.2                  | 15               |
| 110 | Quantum study of the redistribution of flux during inelastic collisions. Journal of Chemical Physics, 1991, 95, 8931-8940.                                                                                         | 1.2                  | 30               |
| 111 | Energetics and spin selectivity in the infrared multiphoton dissociation HN3(X̃1A')→N2(X1Σg+)+NH(X3Σâ′<br>AIP Conference Proceedings, 1989, , .                                                                    | ',a1î").<br>0.3      | 0                |
| 112 | Rotational energy transfer in HF: A computational study. Journal of Chemical Physics, 1989, 91, 7563-7589.                                                                                                         | 1.2                  | 9                |
| 113 | The inelastic scattering of 2Î [case (b)] molecules and an understanding of the differing î› doublet<br>propensities for molecules of i€ vs i€3 orbital occupancy. Journal of Chemical Physics, 1989, 91, 839-848. | 1.2                  | 130              |
| 114 | A logâ€derivative propagation scheme for the exact solution of twoâ€state curve crossing problems.<br>Journal of Chemical Physics, 1989, 91, 2388-2395.                                                            | 1.2                  | 16               |
| 115 | Quantum scattering studies of electronically inelastic collisions of CN (X 2Σ+, A 2Î) with He. Journal<br>Chemical Physics, 1989, 91, 5425-5439.                                                                   | of<br>1.2            | 113              |
| 116 | A semiclassical treatment of rotationally electronically inelastic scattering of NO from Ag(111).<br>Journal of Chemical Physics, 1989, 90, 575-586.                                                               | 1.2                  | 20               |
| 117 | Theoretical study of Ca(4s5p 1P)⇄Ca(4s5p 3P) transitions in collision with noble gases: Integral cross sections and alignment effects. Journal of Chemical Physics, 1989, 91, 1658-1667.                           | 1.2                  | 30               |
| 118 | Mechanism of and alignment effects in spin–changing collisions involving atoms in 1P electronic<br>states: Ca(4s5p 1P)+noble gases. Journal of Chemical Physics, 1989, 90, 5373-5385.                              | 1.2                  | 35               |
| 119 | Inelastic collisions of OH(X 2Î) with paraâ€H2: Λâ€doublet and hyperfineâ€structure transitions. Journal of<br>Chemical Physics, 1988, 88, 6931-6937.                                                              | 1.2                  | 43               |
| 120 | Adiabatic and diabatic potential energy surfaces for collisions of CN(X 2Σ+, A 2Î) with He. Journal of<br>Chemical Physics, 1988, 89, 3139-3151.                                                                   | 1.2                  | 208              |
| 121 | Inelastic collisions of CaF(A 2Î) with He and Ar: Quantum calculations and adiabatic analysis. Journal of Chemical Physics, 1988, 88, 3581-3589.                                                                   | 1.2                  | 13               |
| 122 | Energetics and spin―and ĥâ€doublet selectivity in the infrared multiphoton dissociation<br>HN3(X̃ 1A')→N2(X 1Σ+g)+NH(X3Σâ^',a 1Δ): Theory. Journal of Chemical Physics, 1988, 89, 1                                | <del>38</del> 8-1400 | ). <sup>78</sup> |
| 123 | Quantum theory and collisional propensity rules for rotationally inelastic collisions between polyatomic molecules (NH3 and CO2) and an uncorrugated surface. Journal of Chemical Physics, 1988, 89, 790-800.      | 1.2                  | 5                |
| 124 | Clarification of the electronic asymmetry of ĥ doublets in 3Î electronic states of diatomic molecules.<br>Journal of Chemical Physics, 1987, 87, 7118-7124.                                                        | 1.2                  | 22               |
| 125 | A theoretical study of alignment effects in collisions of N2 with a Ag surface. Journal of Chemical Physics, 1987, 87, 4937-4947.                                                                                  | 1.2                  | 22               |
| 126 | Quantum closeâ€coupled studies of collisions of NO(X 2Î) with a Ag(111) surface. Journal of Chemical<br>Physics, 1987, 87, 3218-3231.                                                                              | 1.2                  | 49               |

| #   | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Theoretical study of Ca(4s5p 1P)→Ca(4s5p 3P) transitions in collisions with He: Integral cross sections and alignment effects. Journal of Chemical Physics, 1987, 86, 4790-4800.                                                                                                      | 1.2 | 67        |
| 128 | The infiniteâ€order sudden approximation for collisions involving molecules in Î electronic states: A<br>new derivation and calculations of rotationally inelastic cross sections for NO(X 2Î)+He and Ar.<br>Journal of Chemical Physics, 1986, 85, 5652-5659.                        | 1.2 | 77        |
| 129 | Theory of Stark spectroscopy of molecules in1Î electronic states: Coherence effects and quantum beats. Journal of Chemical Physics, 1986, 85, 134-145.                                                                                                                                | 1.2 | 17        |
| 130 | Rotationally inelastic collisions between a molecule in a 2S+1Σ electronic state and an openâ€shell<br>target: General quantum analysis and experimental measurement of stateâ€resolved cross sections for<br>CaCl(X 2Σ+)+NO(X 2Σ). Journal of Chemical Physics, 1986, 84, 1547-1553. | 1.2 | 19        |
| 131 | Rotationally inelastic collisions between a molecule in a $2\hat{l}$ electronic state and a 2S atom: Sudden factorization, scaling, and symmetry relations. Journal of Chemical Physics, 1986, 85, 1859-1865.                                                                         | 1.2 | 7         |
| 132 | Collision induced transitions between2Πand2Σ states of diatomic molecules: Quantum theory and collisional propensity rules. Journal of Chemical Physics, 1986, 84, 100-113.                                                                                                           | 1.2 | 94        |
| 133 | On the physical origin of propensity rules in collisions involving molecules in2Σ electronic states.<br>Journal of Chemical Physics, 1986, 84, 3049-3058.                                                                                                                             | 1.2 | 51        |
| 134 | Quantum treatment of rotationally inelastic collisions involving molecules in II electronic states:<br>New derivation of the coupling potential. Chemical Physics, 1985, 92, 337-344.                                                                                                 | 0.9 | 256       |
| 135 | Collisional effects in Stark spectroscopy of molecules in1î electronic states. Journal of Chemical Physics, 1985, 83, 3340-3348.                                                                                                                                                      | 1.2 | 15        |
| 136 | Rotationally inelastic collisions between a diatomic molecule in a 2S+1Σ electronic state and a 2S atom:<br>The optimal choice for the totalâ€J representation. Journal of Chemical Physics, 1985, 83, 5060-5067.                                                                     | 1.2 | 15        |
| 137 | Inelastic collisions of CaCl(X 2Σ+) with Ar: A collaborative theoretical and experimental study. Journal of Chemical Physics, 1985, 83, 556-566.                                                                                                                                      | 1.2 | 29        |
| 138 | Collisionâ€induced transitions between molecular hyperfine levels: Quantum formalism, propensity<br>rules, and experimental study of CaBr(X 2Σ+)+Ar. Journal of Chemical Physics, 1985, 83, 2191-2200.                                                                                | 1.2 | 86        |
| 139 | Clarification of the electronic asymmetry in Îâ€state î≀ doublets with some implications for molecular collisions. Journal of Chemical Physics, 1984, 80, 4325-4332.                                                                                                                  | 1.2 | 136       |
| 140 | Quantum theory of inelastic collisions of a diatomic molecule in a 2Î electronic state with an<br>uncorrugated surface: ĥâ€doublet, spinâ€orbit, and polarization effects in NO (X 2Î)–Ag (111) scattering.<br>Journal of Chemical Physics, 1984, 80, 3485-3493.                      | 1.2 | 46        |
| 141 | Lack of Mâ€preserving propensities in rotationally inelastic collisions of NO(X 2Î1/2). Journal of Chemical<br>Physics, 1984, 80, 4133-4136.                                                                                                                                          | 1.2 | 40        |
| 142 | Polarization and Mâ€dependent effects in rotationally inelastic collisions of openâ€shell diatomic<br>molecules: Ar–NO(X 2Î1/2). Journal of Chemical Physics, 1984, 80, 1506-1516.                                                                                                    | 1.2 | 40        |
| 143 | Hybrid quantum scattering algorithms for longâ€range potentials. Journal of Chemical Physics, 1984, 81,<br>4510-4516.                                                                                                                                                                 | 1.2 | 65        |
| 144 | Theoretical study of intramultiplet transitions in collisions of atoms inP3electronic states with structureless targets:Ca(P3)+He. Physical Review A, 1983, 28, 73-82.                                                                                                                | 1.0 | 103       |

9

| #   | Article                                                                                                                                                                                               | IF                  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 145 | Propensity rules in rotationally inelastic collisions of diatomic molecules in3Σ electronic states.<br>Journal of Chemical Physics, 1983, 79, 302-310.                                                | 1.2                 | 86        |
| 146 | Quantum studies of inelastic collisions of NO(X 2Î) with Ar. Journal of Chemical Physics, 1983, 79,<br>6006-6016.                                                                                     | 1.2                 | 81        |
| 147 | A selection rule for Mâ€dependent transitions in collisional excitation of open shell diatomics. Journal of Chemical Physics, 1983, 78, 800-806.                                                      | 1.2                 | 29        |
| 148 | Model studies of the kinetics of collisional population transfer between dark and radiating excited<br>electronic states: CaO(A′ 1Î)+N2O⇄CaO(A 1Σ+)+N2O. Journal of Chemical Physics, 1982, 77, 839-8 | 35 <u>3.</u>        | 14        |
| 149 | Dipolar model for collisional energy transfer between dark and radiating excited electronic states:<br>CaO(A′ 1Î, a 3Î) +N2O ⇄ CaO(A 1Σ+)+N2O. Journal of Chemical Physics, 1982, 76, 42              | 9 <sup>1</sup> 244. | 59        |
| 150 | Propensity rules for rotationally inelastic collisions of symmetric top molecules or linear polyatomic molecules with structureless atoms. Journal of Chemical Physics, 1982, 77, 1855-1865.          | 1.2                 | 30        |
| 151 | Rotationally inelastic collisions between a diatomic molecule in a2Î electronic state and a structureless target. Journal of Chemical Physics, 1982, 76, 5974-5988.                                   | 1.2                 | 282       |
| 152 | Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target. Journal of Chemical Physics, 1982, 76, 3637-3645.                                 | 1.2                 | 147       |
| 153 | Validity of energy gap representations of rotationally inelastic cross sections between polar molecules. Journal of Chemical Physics, 1980, 73, 3797-3803.                                            | 1.2                 | 15        |
| 154 | The failure of rigid shell models for rotationally inelastic LiH–He collisions. Journal of Chemical<br>Physics, 1980, 73, 1233-1237.                                                                  | 1.2                 | 18        |
| 155 | Rotationally inelastic collisions of LiH with He. II. Theoretical treatment of the dynamics. Journal of<br>Chemical Physics, 1980, 72, 6452-6461.                                                     | 1.2                 | 48        |
| 156 | Closeâ€coupling studies of rotationally inelastic HF–HF collisions at hyperthermal energies. Journal of<br>Chemical Physics, 1980, 73, 5135-5146.                                                     | 1.2                 | 28        |
| 157 | Experimental and theoretical study of rotationally inelastic polar molecule collisions:7LiH–HCN.<br>Journal of Chemical Physics, 1980, 72, 6513-6520.                                                 | 1.2                 | 29        |
| 158 | Sudden theories of rotationally inelastic LiH–HCl and LiH–DCl collisions. Journal of Chemical<br>Physics, 1979, 71, 1683-1691.                                                                        | 1.2                 | 30        |
| 159 | LiH stateâ€ŧoâ€state rotationally inelastic cross sections in collisions with HCl and DCl. Journal of<br>Chemical Physics, 1979, 71, 1670-1682.                                                       | 1.2                 | 54        |
| 160 | Semiempirical potential surfaces and dynamical considerations for collisions between alkali metals and molecular oxygen: Li+O2and Na+O2. Journal of Chemical Physics, 1978, 69, 3502-3517.            | 1.2                 | 60        |
| 161 | Further studies of4He–H2vibrational relaxation. Journal of Chemical Physics, 1977, 66, 4608-4615.                                                                                                     | 1.2                 | 33        |
| 162 | Rotational alignment in inelastic collisions. Journal of Chemical Physics, 1977, 66, 4126-4132.                                                                                                       | 1.2                 | 34        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Quantum interpretation of fully stateâ€selected rotationally inelastic collision experiments. Journal of<br>Chemical Physics, 1977, 66, 59-66.                      | 1.2 | 82        |
| 164 | Rotationally inelastic scattering of two HF molecules. Journal of Chemical Physics, 1977, 66, 1334-1342.                                                            | 1.2 | 70        |
| 165 | Fitting an ab initio HF–HF potential surface. Journal of Chemical Physics, 1976, 65, 5009-5016.                                                                     | 1.2 | 56        |
| 166 | A decoupled lâ€dominant approximation for ion–molecule and atom–molecule collisions. Journal of<br>Chemical Physics, 1976, 64, 3009-3013.                           | 1.2 | 75        |
| 167 | Inelastic contributions to ion–molecule diffusion cross sections: Li+–H2. Journal of Chemical Physics, 1976, 64, 4498-4503.                                         | 1.2 | 12        |
| 168 | Probabilities for classically forbidden transitions using classical and classical path methods. Journal of Chemical Physics, 1976, 65, 2416-2428.                   | 1.2 | 45        |
| 169 | lâ€dominant study of rotationally inelastic Li+–H2collisions. Journal of Chemical Physics, 1975, 63,<br>5327-5332.                                                  | 1.2 | 34        |
| 170 | Anlâ€dominant simplification of the closeâ€coupled equations for collisions between atoms and diatomic molecules. Journal of Chemical Physics, 1975, 63, 3552-3559. | 1.2 | 67        |
| 171 | On analytic fits to the Gordon‧ecrest potential energy surface for He–H2: A reply. Journal of<br>Chemical Physics, 1974, 61, 3868-3869.                             | 1.2 | 10        |
| 172 | Semiclassical Sâ€matrix theory of vibrationally inelastic collisions between two diatomic molecules.<br>Journal of Chemical Physics, 1974, 61, 3967-3976.           | 1.2 | 14        |
| 173 | Potential surface dependence of vibrationally inelastic collisions between He and H2. Journal of Chemical Physics, 1974, 60, 3950-3957.                             | 1.2 | 55        |
| 174 | Fully quantum study of vibrational energy transfer between H2and D2. Journal of Chemical Physics, 1974, 60, 4274-4278.                                              | 1.2 | 17        |
| 175 | Effective potential study of rotationallyâ€vibrationally inelastic collisions between He and H2. Journal of Chemical Physics, 1974, 61, 5167-5181.                  | 1.2 | 50        |