James F Ranville

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4477342/james-f-ranville-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

123
papers7,452
citations46
h-index84
g-index130
ext. papers8,270
ext. citations6.1
avg, IF5.89
L-index

#	Paper	IF	Citations
123	Simultaneous Insight into Dissolution and Aggregation of Metal Sulfide Nanoparticles through Single-Particle Inductively Coupled Plasma Mass Spectrometry. <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 541-550	3.2	1
122	Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 943-952	3.2	1
121	Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	11
120	Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers. <i>Science of the Total Environment</i> , 2020 , 743, 140845	10.2	13
119	Coupling single particle ICP-MS with field-flow fractionation for characterizing metal nanoparticles contained in nanoplastic colloids. <i>Environmental Science: Nano</i> , 2020 , 7, 514-524	7.1	15
118	Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. <i>NanoImpact</i> , 2020 , 17, 100199	5.6	4
117	Characteristics and Stability of Incidental Iron Oxide Nanoparticles during Remediation of a Mining-Impacted Stream. <i>Environmental Science & Environmental Science & Environm</i>	10.3	3
116	Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber. <i>Science of the Total Environment</i> , 2019 , 668, 234-244	10.2	10
115	Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. <i>Science</i> , 2019 , 363,	33.3	250
114	Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis. <i>Journal of Analytical Atomic Spectrometry</i> , 2019 , 34, 1768-1772	3.7	12
113	Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2018 , 100, 64-68	2.7	5
112	Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. <i>Science of the Total Environment</i> , 2018 , 618, 1389-1399	10.2	28
111	Low risk posed by engineered and incidental nanoparticles in drinking water. <i>Nature Nanotechnology</i> , 2018 , 13, 661-669	28.7	73
110	Simulation of a hydraulic fracturing wastewater surface spill on agricultural soil. <i>Science of the Total Environment</i> , 2018 , 645, 229-234	10.2	10
109	Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2018 , 100, 120-126	2.7	30
108	Biodegradation of Carbon Nanotube/Polymer Nanocomposites using a Monoculture. <i>Environmental Science & Environmental &</i>	10.3	17
107	Using single-particle ICP-MS for monitoring metal-containing particles in tap water. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1923-1932	4.2	19

(2016-2018)

106	Gunshot residue (GSR) analysis by single particle inductively coupled plasma mass spectrometry (spICP-MS). <i>Forensic Science International</i> , 2018 , 288, e20-e25	2.6	11
105	Influence of Metal Contamination and Sediment Deposition on Benthic Invertebrate Colonization at the North Fork Clear Creek Superfund Site, Colorado, USA. <i>Environmental Science & amp; Technology</i> , 2018 , 52, 7072-7080	10.3	9
104	Effect of age on acute toxicity of cadmium, copper, nickel, and zinc in individual-metal exposures to Daphnia magna neonates. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 113-119	3.8	20
103	Age-related differences in sensitivity to metals can matter for Daphnia magna neonates. <i>Integrated Environmental Assessment and Management</i> , 2017 , 13, 208-210	2.5	2
102	Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS). <i>Chemosphere</i> , 2017 , 171, 468-475	8.4	12
101	Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. <i>Ecotoxicology</i> , 2017 , 26, 502-515	2.9	13
100	Measurement of the Density of Engineered Silver Nanoparticles Using Centrifugal FFF-TEM and Single Particle ICP-MS. <i>Analytical Chemistry</i> , 2017 , 89, 6056-6064	7.8	16
99	Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics. <i>Environmental Science: Nano</i> , 2017 , 4, 967-982	7.1	28
98	Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient. <i>Environmental Science & Environmental </i>	10.3	20
97	Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. <i>Environmental Science: Nano</i> , 2017 , 4, 1784-1797	7.1	17
96	Multiple Method Analysis of TiO Nanoparticle Uptake in Rice (Oryza sativa L.) Plants. <i>Environmental Science & Environmental &</i>	10.3	62
95	Bioaccumulation and in-vivo dissolution of CdSe/ZnS with three different surface coatings by Daphnia magna. <i>Chemosphere</i> , 2016 , 143, 115-22	8.4	11
94	The Use of Field and Mesocosm Experiments to Quantify Effects of Physical and Chemical Stressors in Mining-Contaminated Streams. <i>Environmental Science & Environmental Scienc</i>	10.3	22
93	Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 5053-74	4.4	199
92	Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents. <i>ACS Applied Materials & Date of the Supplied Mate</i>	9.5	29
91	Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. <i>Environmental Science & Environmental Scien</i>	10.3	79
90	A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1843-51	3.8	18
89	Physiological effects of essential metals on two detritivores: Atyaephyra desmarestii (Millet) and Echinogammarus meridionalis (Pinkster). <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1442-8	3.8	2

88	Analysis of single-walled carbon nanotubes using spICP-MS with microsecond dwell time. <i>NanoImpact</i> , 2016 , 1, 65-72	5.6	16
87	Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS. <i>Analytical Chemistry</i> , 2016 , 88, 4733-41	7.8	27
86	Effect of Surface Charge and Elemental Composition on the Swelling and Delamination of Montmorillonite Nanoclays Using Sedimentation Field-flow Fractionation and Mass Spectroscopy. <i>Clays and Clay Minerals</i> , 2015 , 63, 457-468	2.1	12
85	Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. <i>Environmental Science: Nano</i> , 2015 , 2, 227-244	7.1	46
84	Size Distributions. Frontiers of Nanoscience, 2015, 8, 91-121	0.7	2
83	Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. <i>Applied Geochemistry</i> , 2015 , 61, 72-86	3.5	42
82	Biomonitoring of several toxic metal(loid)s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. <i>Environmental Geochemistry and Health</i> , 2014 , 36, 255-69	4.7	32
81	Cholinesterase activity on Echinogammarus meridionalis (Pinkster) and Atyaephyra desmarestii (Millet): characterisation and in vivo effects of copper and zinc. <i>Ecotoxicology</i> , 2014 , 23, 449-58	2.9	9
80	Sequestration of arsenate from aqueous solution using 2-line ferrihydrite: equilibria, kinetics, and X-ray absorption spectroscopic analysis. <i>Environmental Earth Sciences</i> , 2014 , 71, 3307-3318	2.9	9
79	Thioarsenic species associated with increased arsenic release during biostimulated subsurface sulfate reduction. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	47
78	Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. <i>Journal of Analytical Atomic Spectrometry</i> , 2014 , 29, 1630	3.7	28
77	Nanoparticle size detection limits by single particle ICP-MS for 40 elements. <i>Environmental Science & Environmental &</i>	10.3	294
76	Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. <i>Environmental Science & Environmental Science & Env</i>	10.3	283
75	Nanopesticides: guiding principles for regulatory evaluation of environmental risks. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 4227-40	5.7	210
74	Feeding preferences of two detritivores related to size and metal content of leaves: the crustaceans Atyaephyra desmarestii (Millet) and Echinogammarus meridionalis (Pinkster). <i>Environmental Science and Pollution Research</i> , 2014 , 21, 12325-35	5.1	3
73	Current status and future direction for examining engineered nanoparticles in natural systems. <i>Environmental Chemistry</i> , 2014 , 11, 351	3.2	88
72	The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. <i>Environmental Chemistry</i> , 2014 , 11, 419	3.2	45
71	Detection of single walled carbon nanotubes by monitoring embedded metals. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 204-13	4.3	50

(2012-2013)

70	Silver nanowire exposure results in internalization and toxicity to Daphnia magna. <i>ACS Nano</i> , 2013 , 7, 10681-94	16.7	101
69	Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. <i>Environmental Science & Environmental Science & </i>	1 5- 23	165
68	Detection and characterization of uranium dumic complexes during 1D transport studies. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 109, 127-142	5.5	10
67	Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. <i>Talanta</i> , 2013 , 104, 140-8	6.2	69
66	Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1216-23	3.8	23
65	Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2069-	7 3 .8	48
64	The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. <i>Journal of Hazardous Materials</i> , 2012 , 213-214, 434-9	12.8	43
63	Solubility of nano-zinc oxide in environmentally and biologically important matrices. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 93-9	3.8	216
62	Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 115-21	3.8	255
61	Potential scenarios for nanomaterial release and subsequent alteration in the environment. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 50-9	3.8	457
60	Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea. <i>Environmental Geochemistry and Health</i> , 2012 , 34 Suppl 1, 95-103	4.7	1
59	Metal(loid) levels in biological matrices from human populations exposed to mining contaminationPanasqueira Mine (Portugal). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2012 , 75, 893-908	3.2	53
58	An evaluation of trace metal distribution, enrichment factors and risk in sediments of a coastal lagoon (Ria de Aveiro, Portugal). <i>Environmental Earth Sciences</i> , 2012 , 67, 2043-2052	2.9	12
57	Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. <i>Environmental Science & Environmental Science & Environm</i>	10.3	81
56	Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. <i>Journal of Analytical Atomic Spectrometry</i> , 2012 , 27, 1532	3.7	102
55	Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. <i>Applied Geochemistry</i> , 2012 , 27, 1499-1511	3.5	99
54	Contaminant discharge and uncertainty estimates from passive flux meter measurements. <i>Water Resources Research</i> , 2012 , 48,	5.4	11
53	Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 12272-80	10.3	159

52	Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 2012 , 27, 109	3 ·7	88
51	Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). <i>Journal of Analytical Atomic Spectrometry</i> , 2012 , 27, 1131	3.7	208
50	Nanoparticles in the environment: stability and toxicity. <i>Reviews on Environmental Health</i> , 2012 , 27, 175	-9 .8	13
49	Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry (FFF-ICP-MS): Methodology and Application to Environmental Nanoparticle Research 2012 , 277-299		4
48	Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. <i>Analytical Chemistry</i> , 2011 , 83, 9361-9	7.8	457
47	Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site. <i>Water Research</i> , 2011 , 45, 4866-76	12.5	18
46	Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan. <i>Environmental Geochemistry and Health</i> , 2011 , 33, 149-65	4.7	16
45	Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. <i>Journal of Chromatography A</i> , 2011 , 1218, 4219-25	4.5	146
44	Gadolinium deposition in nephrogenic systemic fibrosis: an examination of tissue using synchrotron x-ray fluorescence spectroscopy. <i>Journal of the American Academy of Dermatology</i> , 2010 , 62, 38-44	4.5	32
43	Distribution of potentially toxic metal and radionuclide contamination in soils related to phosphogypsum waste stockpiling in the Eshidiya Mine, Jordan. <i>Geochemistry: Exploration, Environment, Analysis</i> , 2010 , 10, 419-433	1.8	1
42	Influence of stability on the acute toxicity of CdSe/ZnS nanocrystals to Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1338-44	3.8	54
41	Spatial variations in the fate and transport of metals in a mining-influenced stream, North Fork Clear Creek, Colorado. <i>Science of the Total Environment</i> , 2009 , 407, 6223-34	10.2	18
40	Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 394, 911-7	4.4	48
39	Reactive transport modeling of remedial scenarios to predict cadmium, copper, and zinc in north fork of Clear Creek, Colorado 2009 , 19, 101-119		2
38	An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1233-43	3.8	11
37	Analysis of pH dependent uranium(VI) sorption to nanoparticulate hematite by flow field-flow fractionation-inductively coupled plasma mass spectrometry. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 5403-9	10.3	27
36	Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). <i>Talanta</i> , 2009 , 80, 676-84	6.2	6
35	Metal deposition in calcific uremic arteriolopathy. <i>Journal of the American Academy of Dermatology</i> , 2009 , 61, 73-9	4.5	24

(2005-2009)

34	A regional-scale study of chromium and nickel in soils of northern California, USA. <i>Applied Geochemistry</i> , 2009 , 24, 1500-1511	3.5	79
33	Direct versus indirect determination of suspended sediment associated metals in a mining-influenced watershed. <i>Applied Geochemistry</i> , 2008 , 23, 1218-1231	3.5	16
32	Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream. <i>Water Research</i> , 2008 , 42, 3135-45	12.5	37
31	Cardiac and vascular metal deposition with high mortality in nephrogenic systemic fibrosis. <i>Kidney International</i> , 2008 , 73, 1413-8	9.9	86
30	Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. <i>Ecotoxicology</i> , 2008 , 17, 344-61	2.9	486
29	The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains. <i>Biomass and Bioenergy</i> , 2008 , 32, 267-276	5.3	15
28	Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation. <i>Journal of Contaminant Hydrology</i> , 2007 , 91, 233-46	3.9	50
27	A Simple Scheme to Determine Potential Aquatic Metal Toxicity from Mining Wastes. <i>Environmental Forensics</i> , 2007 , 8, 119-128	1.6	3
26	Distribution and mode of occurrences of radionuclides in phosphogypsum from the Aqaba and Eshidiya fertilizer plants, Jordan. <i>Diqiu Huaxue</i> , 2006 , 25, 178-178		
25	Dermally adhered soil: 1. Amount and particle-size distribution. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 375-384	2.5	71
24	Dermally adhered soil: 2. Reconstruction of dry-sieve particle-size distributions from wet-sieve data. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 385-390	2.5	14
23	Natural organic matter. Interface Science and Technology, 2006, 299-315	2.3	7
22	Coupled Microbial and Chemical Reactions in Uranium Bioremediation 2006 , 183-190		
21	Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III). <i>Environmental Science & Environmental Science & Environment</i>	10.3	108
20	Bioavailability of sediment-associated Cu and Zn to Daphnia magna. <i>Aquatic Toxicology</i> , 2006 , 77, 402-1	1 5.1	16
19	PREDICTING TOXIC EFFECTS OF COPPER ON AQUATIC BIOTA IN MINERALIZED AREAS BY USING THE BIOTIC LIGAND MODEL. <i>Journal of the American Society of Mining and Reclamation</i> , 2006 , 2006, 20	5 3 - 2 07	7 ²
18	Application of flow field flow fractionation-ICPMS for the study of uranium binding in bacterial cell suspensions. <i>Analytical Chemistry</i> , 2005 , 77, 1393-7	7.8	23
17	Characterzation of colloidal and humic-bound Ni and U in the "dissolved" fraction of contaminated sediment extracts. <i>Environmental Science & Environmental Science & Environm</i>	10.3	64

16	Effects of iron on arsenic speciation and redox chemistry in acid mine water. <i>Journal of Geochemical Exploration</i> , 2005 , 85, 55-62	3.8	56
15	Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. <i>Aquatic Toxicology</i> , 2005 , 71, 143-54	5.1	73
14	Particle-Size and Element Distributions of Soil Colloids. <i>Soil Science Society of America Journal</i> , 2005 , 69, 1173-1184	2.5	62
13	Field and laboratory arsenic speciation methods and their application to natural-water analysis. <i>Water Research</i> , 2004 , 38, 355-64	12.5	92
12	Photodegradation of roxarsone in poultry litter leachates. <i>Science of the Total Environment</i> , 2003 , 302, 237-45	10.2	130
11	The iron status in colloidal matter from the Rio Negro, Brasil. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 217, 1-9	5.1	49
10	Presence of organoarsenicals used in cotton production in agricultural water and soil of the southern United States. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 7340-4	5.7	73
9	Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. <i>Environmental Science & Environmental Science</i>	10.3	163
8	Field-flow fractionation characterization and binding properties of particulate and colloidal organic matter from the Rio Amazon and Rio Negro. <i>Organic Geochemistry</i> , 2002 , 33, 269-279	3.1	67
7	Evaluation of Different Field-Flow Fractionation Techniques for Separating Bacteria. <i>Separation Science and Technology</i> , 2000 , 35, 1761-1775	2.5	30
6	Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids. <i>Analytica Chimica Acta</i> , 1999 , 381, 315-329	6.6	73
5	Differentiation of colloidal and dissolved silica: analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry. <i>Analytica Chimica Acta</i> , 1991 , 249, 509-511	6.6	2
4	Use of a single-bowl continuous-flow centrifuge for dewatering suspended sediments: Effect on sediment physical and chemical characteristics. <i>Hydrological Processes</i> , 1991 , 5, 201-214	3.3	32
3	Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A <i>Journal of Contaminant Hydrology</i> , 1990 , 6, 241-250	3.9	33
2	It is raining plastic. US Geological Survey Open-File Report,		10
1	Assessing CeO2 and TiO2 Nanoparticle Concentrations in the Seine River and Its Tributaries Near Paris. <i>Frontiers in Environmental Science</i> ,8,	4.8	3