Peter J Schaap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476920/publications.pdf

Version: 2024-02-01

113 papers 6,216 citations

94269 37 h-index 72 g-index

142 all docs $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

times ranked

142

7787 citing authors

#	Article	IF	Citations
1	Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms, 2022, 10, 1134.	1.6	3
2	SALARECON connects the Atlantic salmon genome to growth and feed efficiency. PLoS Computational Biology, 2022, 18, e1010194.	1.5	4
3	Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microbial Cell Factories, 2022, 21, .	1.9	8
4	Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning. Scientific Reports, 2022, 12 , .	1.6	7
5	Navigating the Valley of Death: Perceptions of Industry and Academia on Production Platforms and Opportunities in Biotechnology. EFB Bioeconomy Journal, 2022, 2, 100033.	1.1	5
6	A protocol for adding knowledge to Wikidata: aligning resources on human coronaviruses. BMC Biology, 2021, 19, 12.	1.7	14
7	Experimental infrastructure requirements for quantitative research on microbial communities. Current Opinion in Biotechnology, 2021, 67, 158-165.	3.3	6
8	A chromosomeâ€level assembly of the black tiger shrimp (<i>Penaeus monodon</i>) genome facilitates the identification of growthâ€associated genes. Molecular Ecology Resources, 2021, 21, 1620-1640.	2.2	43
9	Global Transcriptional Response of Aspergillus niger to Blocked Active Citrate Export through Deletion of the Exporter Gene. Journal of Fungi (Basel, Switzerland), 2021, 7, 409.	1.5	7
10	From Innovation to Application: Bridging the Valley of Death in Industrial Biotechnology. Trends in Biotechnology, 2021, 39, 1240-1242.	4.9	22
11	Genome-scale metabolic modeling underscores the potential of Cutaneotrichosporon oleaginosus ATCC 20509 as a cell factory for biofuel production. Biotechnology for Biofuels, 2021, 14, 2.	6.2	18
12	A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration. BMC Microbiology, 2021, 21, 9.	1.3	20
13	Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiology, 2021, 21, 298.	1.3	10
14	Machine learning approaches to predict the Plant-associated phenotype of Xanthomonas strains. BMC Genomics, 2021, 22, 848.	1.2	6
15	Designing Eukaryotic Gene Expression Regulation Using Machine Learning. Trends in Biotechnology, 2020, 38, 191-201.	4.9	30
16	Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. BMC Genomics, 2020, 21, 24.	1.2	21
17	Time-dependent transcriptome profile of genes involved in triacylglycerol (TAG) and polyunsaturated fatty acid synthesis in Nannochloropsis gaditana during nitrogen starvation. Journal of Applied Phycology, 2020, 32, 1153-1164.	1.5	16
18	Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Computational and Structural Biotechnology Journal, 2020, 18, 3255-3266.	1.9	29

#	Article	IF	Citations
19	Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Frontiers in Microbiology, 2020, 11, 1679.	1.5	4
20	Evaluation of diurnal responses of Tetradesmus obliquus under nitrogen limitation. Algal Research, 2020, 49, 101937.	2.4	0
21	Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Scientific Reports, 2020, 10, 3232.	1.6	11
22	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	9.4	314
23	The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation. Scientific Data, 2019, 6, 254.	2.4	13
24	Distant Non-Obvious Mutations Influence the Activity of a Hyperthermophilic Pyrococcus furiosus Phosphoglucose Isomerase. Biomolecules, 2019, 9, 212.	1.8	11
25	<i>Aspergillus niger</i> citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiology Letters, 2019, 366, .	0.7	26
26	Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 144.	1.8	21
27	The diurnal transcriptional landscape of the microalga Tetradesmus obliquus. Algal Research, 2019, 40, 101477.	2.4	9
28	Consistency, Inconsistency, and Ambiguity of Metabolite Names in Biochemical Databases Used for Genome-Scale Metabolic Modelling. Metabolites, 2019, 9, 28.	1.3	28
29	Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends in Biotechnology, 2019, 37, 805-816.	4.9	8
30	In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microbial Cell Factories, 2019, 18, 179.	1.9	23
31	Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas. Scientific Reports, 2019, 9, 18081.	1.6	43
32	NG-Tax 2.0: A Semantic Framework for High-Throughput Amplicon Analysis. Frontiers in Genetics, 2019, 10, 1366.	1.1	95
33	Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek, 2018, 111, 859-873.	0.7	90
34	Modelâ€driven design of a minimal medium for <i>Akkermansia muciniphila</i> confirms mucus adaptation. Microbial Biotechnology, 2018, 11, 476-485.	2.0	57
35	Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biology and Evolution, 2018, 10, 125-142.	1.1	26
36	Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition, 2018, 13, 5.	1.2	31

#	Article	IF	Citations
37	Forward Genetics by Genome Sequencing Uncovers the Central Role of the Aspergillus niger goxB Locus in Hydrogen Peroxide Induced Glucose Oxidase Expression. Frontiers in Microbiology, 2018, 9, 2269.	1.5	13
38	Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut. PLoS ONE, 2018, 13, e0194066.	1.1	14
39	Modeling the Metabolic State of Mycobacterium tuberculosis Upon Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 264.	1.8	19
40	Neochloris oleoabundans is worth its salt: Transcriptomic analysis under salt and nitrogen stress. PLoS ONE, 2018, 13, e0194834.	1.1	37
41	Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. International Journal of Molecular Sciences, 2018, 19, 347.	1.8	46
42	SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics, 2018, 34, 1401-1403.	1.8	44
43	Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent access. PLoS ONE, 2018, 13, e0198990.	1.1	18
44	Complete Genome Sequence of Akkermansia glycaniphila Strain Pyt <code>^T</code> , a Mucin-Degrading Specialist of the Reticulated Python Gut. Genome Announcements, 2017, 5, .	0.8	16
45	Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1 ^T . Applied and Environmental Microbiology, 2017, 83, .	1.4	16
46	Monascus ruber as cell factory for lactic acid production at low pH. Metabolic Engineering, 2017, 42, 66-73.	3.6	19
47	Metabolic modeling of energy balances in <i>Mycoplasma hyopneumoniae</i> shows that pyruvate addition increases growth rate. Biotechnology and Bioengineering, 2017, 114, 2339-2347.	1.7	15
48	Identification of methylated GnTlâ€dependent <i>N</i> â€glycans in <i>Botryococcus brauni</i> . New Phytologist, 2017, 215, 1361-1369.	3.5	35
49	Genome-Scale Model and Omics Analysis of Metabolic Capacities of <i>Akkermansia muciniphila</i> Reveal a Preferential Mucin-Degrading Lifestyle. Applied and Environmental Microbiology, 2017, 83, .	1.4	170
50	Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life. Frontiers in Cellular and Infection Microbiology, 2017, 7, 31.	1.8	16
51	Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Frontiers in Microbiology, 2017, 8, 1424.	1.5	34
52	CorNet: Assigning function to networks of co-evolving residues by automated literature mining. PLoS ONE, 2017, 12, e0176427.	1.1	12
53	Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS ONE, 2017, 12, e0184355.	1.1	37
54	Comparative proteomics of <i>Rhizopus delemar </i> ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ, 2017, 5, e3133.	0.9	14

#	Article	IF	CITATIONS
55	Genomic and functional analysis of <i>Romboutsia ilealis </i> CRIB < sup>T reveals adaptation to the small intestine. Peerl, 2017, 5, e3698.	0.9	88
56	Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnology for Biofuels, 2016, 9, 148.	6.2	71
57	Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger. PLoS Genetics, 2016, 12, e1006468.	1.5	41
58	Genome and proteome analysis of <scp><i>P</i></scp> <i>seudomonas chloritidismutans</i> â€ <scp>AW</scp> â€1 <scp>^T</scp> that grows on <i>n</i> êdecane with chlorate or oxygen as electron acceptor. Environmental Microbiology, 2016, 18, 3247-3257.	1.8	21
59	Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Scientific Reports, 2016, 6, 38699.	1.6	53
60	Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T. Standards in Genomic Sciences, 2016, 11, 52.	1.5	13
61	Unravelling the oneâ€carbon metabolism of the acetogen <scp><i>S</i></scp> <i>poromusa</i> <scp>A</scp> n4 by genome and proteome analysis. Environmental Microbiology, 2016, 18, 2843-2855.	1.8	25
62	Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3957-3963.	0.8	27
63	NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research, 2016, 5, 1791.	0.8	140
64	NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research, 2016, 5, 1791.	0.8	121
65	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 2016, 5, 1987.	0.8	20
66	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 2016, 5, 1987.	0.8	18
67	Functional Profiling of Unfamiliar Microbial Communities Using a Validated De Novo Assembly Metatranscriptome Pipeline. PLoS ONE, 2016, 11, e0146423.	1.1	23
68	Algal Omics: The Functional Annotation Challenge. Current Biotechnology, 2016, 4, 457-463.	0.2	2
69	Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S. Standards in Genomic Sciences, 2015, 10, 15.	1.5	25
70	RDF2Graph a tool to recover, understand and validate the ontology of an RDF resource. Journal of Biomedical Semantics, 2015, 6, 39.	0.9	13
71	Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View. PLoS ONE, 2015, 10, e0137908.	1.1	8
72	Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC. FEMS Microbiology Letters, 2015, 362, .	0.7	9

#	Article	IF	CITATIONS
73	Comparative Genomics of Streptococcus pyogenes M1 isolates differing in virulence and propensity to cause systemic infection in mice. International Journal of Medical Microbiology, 2015, 305, 532-543.	1.5	37
74	Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics, 2015, 16, 34.	1.2	90
75	Effects of Argonaute on Gene Expression in Thermus thermophilus. PLoS ONE, 2015, 10, e0124880.	1.1	44
76	Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Seminars in Immunology, 2014, 26, 610-622.	2.7	49
77	Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC Systems Biology, 2014, 8, 111.	3.0	13
78	RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular Cell, 2014, 56, 518-530.	4.5	267
79	Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends in Biotechnology, 2014, 32, 617-626.	4.9	53
80	A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 2004-2016.	0.5	107
81	Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express, 2014, 4, 66.	1.4	27
82	Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. Standards in Genomic Sciences, 2014, 9, 655-675.	1.5	25
83	Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium. Standards in Genomic Sciences, 2014, 9, 821-839.	1.5	27
84	Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus. Molecular Cell, 2013, 52, 135-145.	4.5	212
85	A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genomics, 2013, 14, 530.	1.2	111
86	Metabolic response of <i><scp>A</scp>licycliphilus denitrificans</i> strain <scp>BC</scp> toward electron acceptor variation. Proteomics, 2013, 13, 2886-2894.	1.3	13
87	Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT Standards in Genomic Sciences, 2013, 8, 69-87.	1.5	42
88	Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T. PLoS ONE, 2013, 8, e66971.	1.1	32
89	Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT). Standards in Genomic Sciences, 2012, 7, 304-319.	1.5	22
90	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	2.4	329

#	Article	IF	Citations
91	Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose. PLoS ONE, 2011, 6, e20865.	1.1	47
92	An iterative workflow for mining the human intestinal metaproteome. BMC Genomics, 2011, 12, 6.	1.2	93
93	An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics, 2010, 11, 584.	1.2	74
94	Novel tools for extraction and validation of disease-related mutations applied to fabry disease. Human Mutation, 2010, 31, 1026-1032.	1.1	22
95	3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins: Structure, Function and Bioinformatics, 2010, 78, NA-NA.	1.5	115
96	Shotgun Proteomics of <i>Aspergillus niger</i> Microsomes upon <scp>d</scp> -Xylose Induction. Applied and Environmental Microbiology, 2010, 76, 4421-4429.	1.4	39
97	Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases. Journal of Biological Chemistry, 2009, 284, 4392-4397.	1.6	83
98	Correlated mutation analyses on superâ€family alignments reveal functionally important residues. Proteins: Structure, Function and Bioinformatics, 2009, 76, 608-616.	1.5	77
99	Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology, 2009, 46, \$170-\$179.	0.9	102
100	Structure and Function of 2,3-Dimethylmalate Lyase, a PEP Mutase/Isocitrate Lyase Superfamily Member. Journal of Molecular Biology, 2009, 386, 486-503.	2.0	13
101	ldentification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence markerâ€based method. Proteins: Structure, Function and Bioinformatics, 2008, 70, 157-166.	1.5	27
102	An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genetics and Biology, 2008, 45, 1449-1457.	0.9	74
103	Oxaloacetate Hydrolase, the C–C Bond Lyase of Oxalate Secreting Fungi. Journal of Biological Chemistry, 2007, 282, 9581-9590.	1.6	102
104	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	9.4	1,047
105	A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochemical Journal, 2006, 400, 43-52.	1.7	62
106	Characterisation of Aspergillus niger prolyl aminopeptidase. Molecular Genetics and Genomics, 2005, 272, 673-679.	1.0	27
107	Characterisation of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptidyl aminopeptidase. Molecular Genetics and Genomics, 2005, 273, 319-325.	1.0	9
108	Aminopeptidase C of Aspergillus niger Is a Novel Phenylalanine Aminopeptidase. Applied and Environmental Microbiology, 2003, 69, 1246-1250.	1.4	12

#	Article	IF	CITATION
109	Lysine aminopeptidase of Aspergillus niger The EMBL accession number for the sequence reported in this paper is AJ292570 Microbiology (United Kingdom), 2001, 147, 2045-2050.	0.7	34
110	Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom Agaricus bisporus. Microbiology (United Kingdom), 1999, 145, 1105-1113.	0.7	39
111	Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology (United Kingdom), 1997, 143, 1993-2001.	0.7	53
112	Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Current Genetics, 1993, 24, 408-416.	0.8	65
113	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 0, 5, 1987.	0.8	12