
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476920/publications.pdf Version: 2024-02-01

DETED | SCHAAD

#	Article	IF	CITATIONS
1	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	9.4	1,047
2	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	2.4	329
3	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	9.4	314
4	RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular Cell, 2014, 56, 518-530.	4.5	267
5	Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus. Molecular Cell, 2013, 52, 135-145.	4.5	212
6	Genome-Scale Model and Omics Analysis of Metabolic Capacities of <i>Akkermansia muciniphila</i> Reveal a Preferential Mucin-Degrading Lifestyle. Applied and Environmental Microbiology, 2017, 83, .	1.4	170
7	NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research, 2016, 5, 1791.	0.8	140
8	NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research, 2016, 5, 1791.	0.8	121
9	3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins: Structure, Function and Bioinformatics, 2010, 78, NA-NA.	1.5	115
10	A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genomics, 2013, 14, 530.	1.2	111
11	A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 2004-2016.	0.5	107
12	Oxaloacetate Hydrolase, the C–C Bond Lyase of Oxalate Secreting Fungi. Journal of Biological Chemistry, 2007, 282, 9581-9590.	1.6	102
13	Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology, 2009, 46, S170-S179.	0.9	102
14	NG-Tax 2.0: A Semantic Framework for High-Throughput Amplicon Analysis. Frontiers in Genetics, 2019, 10, 1366.	1.1	95
15	An iterative workflow for mining the human intestinal metaproteome. BMC Genomics, 2011, 12, 6.	1.2	93
16	Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics, 2015, 16, 34.	1.2	90
17	Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek, 2018, 111, 859-873.	0.7	90
18	Genomic and functional analysis of <i>Romboutsia ilealis</i> CRIB ^T reveals adaptation to the small intestine. PeerJ, 2017, 5, e3698.	0.9	88

PETER J SCHAAP

#	Article	IF	CITATIONS
19	Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases. Journal of Biological Chemistry, 2009, 284, 4392-4397.	1.6	83
20	Correlated mutation analyses on superâ€family alignments reveal functionally important residues. Proteins: Structure, Function and Bioinformatics, 2009, 76, 608-616.	1.5	77
21	An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genetics and Biology, 2008, 45, 1449-1457.	0.9	74
22	An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics, 2010, 11, 584.	1.2	74
23	Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnology for Biofuels, 2016, 9, 148.	6.2	71
24	Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Current Genetics, 1993, 24, 408-416.	0.8	65
25	A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochemical Journal, 2006, 400, 43-52.	1.7	62
26	Modelâ€driven design of a minimal medium for <i>Akkermansia muciniphila</i> confirms mucus adaptation. Microbial Biotechnology, 2018, 11, 476-485.	2.0	57
27	Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology (United Kingdom), 1997, 143, 1993-2001.	0.7	53
28	Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends in Biotechnology, 2014, 32, 617-626.	4.9	53
29	Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Scientific Reports, 2016, 6, 38699.	1.6	53
30	Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Seminars in Immunology, 2014, 26, 610-622.	2.7	49
31	Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose. PLoS ONE, 2011, 6, e20865.	1.1	47
32	Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. International Journal of Molecular Sciences, 2018, 19, 347.	1.8	46
33	Effects of Argonaute on Gene Expression in Thermus thermophilus. PLoS ONE, 2015, 10, e0124880.	1.1	44
34	SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics, 2018, 34, 1401-1403.	1.8	44
35	Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas. Scientific Reports, 2019, 9, 18081.	1.6	43
36	A chromosomeâ€level assembly of the black tiger shrimp (<i>Penaeus monodon</i>) genome facilitates the identification of growthâ€associated genes. Molecular Ecology Resources, 2021, 21, 1620-1640.	2.2	43

#	Article	IF	CITATIONS
37	Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT Standards in Genomic Sciences, 2013, 8, 69-87.	1.5	42
38	Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger. PLoS Genetics, 2016, 12, e1006468.	1.5	41
39	Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom Agaricus bisporus. Microbiology (United Kingdom), 1999, 145, 1105-1113.	0.7	39
40	Shotgun Proteomics of <i>Aspergillus niger</i> Microsomes upon <scp>d</scp> -Xylose Induction. Applied and Environmental Microbiology, 2010, 76, 4421-4429.	1.4	39
41	Comparative Genomics of Streptococcus pyogenes M1 isolates differing in virulence and propensity to cause systemic infection in mice. International Journal of Medical Microbiology, 2015, 305, 532-543.	1.5	37
42	Neochloris oleoabundans is worth its salt: Transcriptomic analysis under salt and nitrogen stress. PLoS ONE, 2018, 13, e0194834.	1.1	37
43	Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS ONE, 2017, 12, e0184355.	1.1	37
44	Identification of methylated GnTlâ€dependent <i>N</i> â€glycans in <i>Botryococcus brauni</i> . New Phytologist, 2017, 215, 1361-1369.	3.5	35
45	Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Frontiers in Microbiology, 2017, 8, 1424.	1.5	34
46	Lysine aminopeptidase of Aspergillus niger The EMBL accession number for the sequence reported in this paper is AJ292570 Microbiology (United Kingdom), 2001, 147, 2045-2050.	0.7	34
47	Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T. PLoS ONE, 2013, 8, e66971.	1.1	32
48	Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition, 2018, 13, 5.	1.2	31
49	Designing Eukaryotic Gene Expression Regulation Using Machine Learning. Trends in Biotechnology, 2020, 38, 191-201.	4.9	30
50	Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Computational and Structural Biotechnology Journal, 2020, 18, 3255-3266.	1.9	29
51	Consistency, Inconsistency, and Ambiguity of Metabolite Names in Biochemical Databases Used for Genome-Scale Metabolic Modelling. Metabolites, 2019, 9, 28.	1.3	28
52	Characterisation of Aspergillus niger prolyl aminopeptidase. Molecular Genetics and Genomics, 2005, 272, 673-679.	1.0	27
53	Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence markerâ€based method. Proteins: Structure, Function and Bioinformatics, 2008, 70, 157-166.	1.5	27
54	Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express, 2014, 4, 66.	1.4	27

#	Article	IF	CITATIONS
55	Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium. Standards in Genomic Sciences, 2014, 9, 821-839.	1.5	27
56	Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3957-3963.	0.8	27
57	Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biology and Evolution, 2018, 10, 125-142.	1.1	26
58	<i>Aspergillus niger</i> citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiology Letters, 2019, 366, .	0.7	26
59	Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. Standards in Genomic Sciences, 2014, 9, 655-675.	1.5	25
60	Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S. Standards in Genomic Sciences, 2015, 10, 15.	1.5	25
61	Unravelling the oneâ€carbon metabolism of the acetogen <scp><i>S</i></scp> <i>poromusa</i> strain <scp>A</scp> n4 by genome and proteome analysis. Environmental Microbiology, 2016, 18, 2843-2855.	1.8	25
62	In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microbial Cell Factories, 2019, 18, 179.	1.9	23
63	Functional Profiling of Unfamiliar Microbial Communities Using a Validated De Novo Assembly Metatranscriptome Pipeline. PLoS ONE, 2016, 11, e0146423.	1.1	23
64	Novel tools for extraction and validation of disease-related mutations applied to fabry disease. Human Mutation, 2010, 31, 1026-1032.	1.1	22
65	Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT). Standards in Genomic Sciences, 2012, 7, 304-319.	1.5	22
66	From Innovation to Application: Bridging the Valley of Death in Industrial Biotechnology. Trends in Biotechnology, 2021, 39, 1240-1242.	4.9	22
67	Genome and proteome analysis of <scp> <i>P</i></scp> <i>seudomonas chloritidismutans</i> â€ <scp>AW</scp> â€l <scp> ^T </scp> that grows on <i>n</i> â€decane with chlorate or oxygen as electron acceptor. Environmental Microbiology, 2016, 18, 3247-3257.	1.8	21
68	Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 144.	1.8	21
69	Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. BMC Genomics, 2020, 21, 24.	1.2	21
70	A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration. BMC Microbiology, 2021, 21, 9.	1.3	20
71	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 2016, 5, 1987.	0.8	20
72	Monascus ruber as cell factory for lactic acid production at low pH. Metabolic Engineering, 2017, 42, 66-73.	3.6	19

#	Article	IF	CITATIONS
73	Modeling the Metabolic State of Mycobacterium tuberculosis Upon Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 264.	1.8	19
74	Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent access. PLoS ONE, 2018, 13, e0198990.	1.1	18
75	Genome-scale metabolic modeling underscores the potential of Cutaneotrichosporon oleaginosus ATCC 20509 as a cell factory for biofuel production. Biotechnology for Biofuels, 2021, 14, 2.	6.2	18
76	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 2016, 5, 1987.	0.8	18
77	Complete Genome Sequence of Akkermansia glycaniphila Strain Pyt ^T , a Mucin-Degrading Specialist of the Reticulated Python Gut. Genome Announcements, 2017, 5, .	0.8	16
78	Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1 ^T . Applied and Environmental Microbiology, 2017, 83, .	1.4	16
79	Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life. Frontiers in Cellular and Infection Microbiology, 2017, 7, 31.	1.8	16
80	Time-dependent transcriptome profile of genes involved in triacylglycerol (TAG) and polyunsaturated fatty acid synthesis in Nannochloropsis gaditana during nitrogen starvation. Journal of Applied Phycology, 2020, 32, 1153-1164.	1.5	16
81	Metabolic modeling of energy balances in <i>Mycoplasma hyopneumoniae</i> shows that pyruvate addition increases growth rate. Biotechnology and Bioengineering, 2017, 114, 2339-2347.	1.7	15
82	Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut. PLoS ONE, 2018, 13, e0194066.	1.1	14
83	A protocol for adding knowledge to Wikidata: aligning resources on human coronaviruses. BMC Biology, 2021, 19, 12.	1.7	14
84	Comparative proteomics of <i>Rhizopus delemar</i> ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ, 2017, 5, e3133.	0.9	14
85	Structure and Function of 2,3-Dimethylmalate Lyase, a PEP Mutase/Isocitrate Lyase Superfamily Member. Journal of Molecular Biology, 2009, 386, 486-503.	2.0	13
86	Metabolic response of <i><scp>A</scp>licycliphilus denitrificans</i> strain <scp>BC</scp> toward electron acceptor variation. Proteomics, 2013, 13, 2886-2894.	1.3	13
87	Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC Systems Biology, 2014, 8, 111.	3.0	13
88	RDF2Graph a tool to recover, understand and validate the ontology of an RDF resource. Journal of Biomedical Semantics, 2015, 6, 39.	0.9	13
89	Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T. Standards in Genomic Sciences, 2016, 11, 52.	1.5	13
90	Forward Genetics by Genome Sequencing Uncovers the Central Role of the Aspergillus niger goxB Locus in Hydrogen Peroxide Induced Glucose Oxidase Expression. Frontiers in Microbiology, 2018, 9, 2269.	1.5	13

#	Article	IF	CITATIONS
91	The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation. Scientific Data, 2019, 6, 254.	2.4	13
92	Aminopeptidase C of Aspergillus niger Is a Novel Phenylalanine Aminopeptidase. Applied and Environmental Microbiology, 2003, 69, 1246-1250.	1.4	12
93	CorNet: Assigning function to networks of co-evolving residues by automated literature mining. PLoS ONE, 2017, 12, e0176427.	1.1	12
94	Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research, 0, 5, 1987.	0.8	12
95	Distant Non-Obvious Mutations Influence the Activity of a Hyperthermophilic Pyrococcus furiosus Phosphoglucose Isomerase. Biomolecules, 2019, 9, 212.	1.8	11
96	Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Scientific Reports, 2020, 10, 3232.	1.6	11
97	Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiology, 2021, 21, 298.	1.3	10
98	Characterisation of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptidyl aminopeptidase. Molecular Genetics and Genomics, 2005, 273, 319-325.	1.0	9
99	Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC. FEMS Microbiology Letters, 2015, 362, .	0.7	9
100	The diurnal transcriptional landscape of the microalga Tetradesmus obliquus. Algal Research, 2019, 40, 101477.	2.4	9
101	Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View. PLoS ONE, 2015, 10, e0137908.	1.1	8
102	Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends in Biotechnology, 2019, 37, 805-816.	4.9	8
103	Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microbial Cell Factories, 2022, 21, .	1.9	8
104	Global Transcriptional Response of Aspergillus niger to Blocked Active Citrate Export through Deletion of the Exporter Gene. Journal of Fungi (Basel, Switzerland), 2021, 7, 409.	1.5	7
105	Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning. Scientific Reports, 2022, 12, .	1.6	7
106	Experimental infrastructure requirements for quantitative research on microbial communities. Current Opinion in Biotechnology, 2021, 67, 158-165.	3.3	6
107	Machine learning approaches to predict the Plant-associated phenotype of Xanthomonas strains. BMC Genomics, 2021, 22, 848.	1.2	6
108	Navigating the Valley of Death: Perceptions of Industry and Academia on Production Platforms and Opportunities in Biotechnology. EFB Bioeconomy Journal, 2022, 2, 100033.	1.1	5

#	Article	IF	CITATIONS
109	Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Frontiers in Microbiology, 2020, 11, 1679.	1.5	4
110	SALARECON connects the Atlantic salmon genome to growth and feed efficiency. PLoS Computational Biology, 2022, 18, e1010194.	1.5	4
111	Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms, 2022, 10, 1134.	1.6	3
112	Algal Omics: The Functional Annotation Challenge. Current Biotechnology, 2016, 4, 457-463.	0.2	2
113	Evaluation of diurnal responses of Tetradesmus obliquus under nitrogen limitation. Algal Research, 2020, 49, 101937.	2.4	0