List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476852/publications.pdf Version: 2024-02-01



LUCA REANDT

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | On the breakdown of boundary layer streaks. Journal of Fluid Mechanics, 2001, 428, 29-60.                                                                   | 1.4  | 379       |
| 2  | Transition in boundary layers subject to free-stream turbulence. Journal of Fluid Mechanics, 2004, 517,<br>167-198.                                         | 1.4  | 329       |
| 3  | Steady solutions of the Navier-Stokes equations by selective frequency damping. Physics of Fluids, 2006, 18, 068102.                                        | 1.6  | 255       |
| 4  | Turbulent channel flow of dense suspensions of neutrally buoyant spheres. Journal of Fluid<br>Mechanics, 2015, 764, 463-487.                                | 1.4  | 203       |
| 5  | Delaying Transition to Turbulence by a Passive Mechanism. Physical Review Letters, 2006, 96, 064501.                                                        | 2.9  | 199       |
| 6  | Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Physics of Fluids, 2004, 16, 3627-3638. | 1.6  | 166       |
| 7  | Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Physics of Fluids, 2012, 24, .                                                                 | 1.6  | 152       |
| 8  | Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius<br>boundary layer. Physics of Fluids, 2002, 14, L57-L60.     | 1.6  | 151       |
| 9  | On streak breakdown in bypass transition. Physics of Fluids, 2008, 20, .                                                                                    | 1.6  | 143       |
| 10 | On Tollmien–Schlichting-like waves in streaky boundary layers. European Journal of Mechanics,<br>B/Fluids, 2004, 23, 815-833.                               | 1.2  | 136       |
| 11 | Particle-Laden Turbulence: Progress and Perspectives. Annual Review of Fluid Mechanics, 2022, 54, 159-189.                                                  | 10.8 | 133       |
| 12 | Input–output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid<br>Mechanics, 2009, 620, 263-298.                     | 1.4  | 131       |
| 13 | Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks.<br>Physics of Fluids, 2005, 17, 054110.                  | 1.6  | 130       |
| 14 | Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 2010, 650, 513-536.                                | 1.4  | 129       |
| 15 | Transition of streamwise streaks in zero-pressure-gradient boundary layers. Journal of Fluid<br>Mechanics, 2002, 472, 229-261.                              | 1.4  | 124       |
| 16 | Wall accumulation and spatial localization in particle-laden wall flows. Journal of Fluid Mechanics, 2012, 699, 50-78.                                      | 1.4  | 123       |
| 17 | Low-Reynolds-number swimming in aÂcapillaryÂtube. Journal of Fluid Mechanics, 2013, 726, 285-311.                                                           | 1.4  | 120       |
| 18 | Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers.<br>Journal of Fluid Mechanics, 2010, 650, 181-214.    | 1.4  | 117       |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The lift-up effect: The linear mechanism behind transition and turbulence in shear flows. European<br>Journal of Mechanics, B/Fluids, 2014, 47, 80-96.              | 1.2 | 111       |
| 20 | Matrix-Free Methods for the Stability and Control of Boundary Layers. AIAA Journal, 2009, 47, 1057-1068.                                                            | 1.5 | 84        |
| 21 | Nonequilibrium Thermodynamics and the Optimal Path to Turbulence in Shear Flows. Physical Review Letters, 2011, 106, 134502.                                        | 2.9 | 82        |
| 22 | Laminar, Turbulent, and Inertial Shear-Thickening Regimes in Channel Flow of Neutrally Buoyant<br>Particle Suspensions. Physical Review Letters, 2014, 113, 254502. | 2.9 | 82        |
| 23 | Analysis of Fluid Systems: Stability, Receptivity, Sensitivity. Applied Mechanics Reviews, 2014, 66, .                                                              | 4.5 | 80        |
| 24 | Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase<br>Flow, 2016, 87, 16-34.                                         | 1.6 | 80        |
| 25 | Micropropulsion and microrheology in complex fluids via symmetry breaking. Physics of Fluids, 2012, 24, .                                                           | 1.6 | 79        |
| 26 | Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. Journal of Fluid<br>Mechanics, 2011, 687, 503-528.                                | 1.4 | 78        |
| 27 | Locomotion by tangential deformation in a polymeric fluid. Physical Review E, 2011, 83, 011901.                                                                     | 0.8 | 77        |
| 28 | Sedimentation of finite-size spheres in quiescent and turbulent environments. Journal of Fluid<br>Mechanics, 2016, 788, 640-669.                                    | 1.4 | 74        |
| 29 | Turbulent channel flow over an anisotropic porous wall – drag increase and reduction. Journal of<br>Fluid Mechanics, 2018, 842, 381-394.                            | 1.4 | 74        |
| 30 | Shear Thickening in Non-Brownian Suspensions: An Excluded Volume Effect. Physical Review Letters, 2013, 111, 098302.                                                | 2.9 | 71        |
| 31 | Minimal transition thresholds in plane Couette flow. Physics of Fluids, 2013, 25, .                                                                                 | 1.6 | 71        |
| 32 | Continuous Growth of Droplet Size Variance due to Condensation in Turbulent Clouds. Physical<br>Review Letters, 2015, 115, 184501.                                  | 2.9 | 71        |
| 33 | Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. Journal of Fluid<br>Mechanics, 2017, 830, 708-735.                                | 1.4 | 71        |
| 34 | Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. Journal of Fluid<br>Mechanics, 2010, 653, 245-271.                       | 1.4 | 68        |
| 35 | Swept wing boundary-layer receptivity to localized surface roughness. Journal of Fluid Mechanics, 2012, 711, 516-544.                                               | 1.4 | 68        |
| 36 | Transient growth on boundary layer streaks. Journal of Fluid Mechanics, 2005, 537, 91.                                                                              | 1.4 | 67        |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. Journal of Fluid<br>Mechanics, 2013, 737, 249-279.                           | 1.4 | 67        |
| 38 | On the convectively unstable nature of optimal streaks in boundary layers. Journal of Fluid<br>Mechanics, 2003, 485, 221-242.                                       | 1.4 | 65        |
| 39 | Receptivity mechanisms in three-dimensional boundary-layer flows. Journal of Fluid Mechanics, 2009, 618, 209-241.                                                   | 1.4 | 65        |
| 40 | The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Physics of Fluids, 2014, 26, .                               | 1.6 | 65        |
| 41 | Inertial migration of spherical and oblateÂparticles in straight ducts. Journal of Fluid Mechanics, 2017,<br>819, 540-561.                                          | 1.4 | 64        |
| 42 | Streak interactions and breakdown in boundary layer flows. Physics of Fluids, 2008, 20, .                                                                           | 1.6 | 62        |
| 43 | Receptivity, instability and breakdown of Görtler flow. Journal of Fluid Mechanics, 2011, 682, 362-396.                                                             | 1.4 | 61        |
| 44 | DNS of a spatially developing turbulent boundary layer with passive scalar transport. International<br>Journal of Heat and Fluid Flow, 2009, 30, 916-929.           | 1.1 | 60        |
| 45 | Accumulation of motile elongated micro-organisms in turbulence. Journal of Fluid Mechanics, 2014, 739, 22-36.                                                       | 1.4 | 60        |
| 46 | The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Physics of Fluids, 2016, 28, .                 | 1.6 | 60        |
| 47 | Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. Journal of the Royal Society Interface, 2013, 10, 20121041. | 1.5 | 59        |
| 48 | A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows.<br>Journal of Computational Physics, 2020, 407, 109251.              | 1.9 | 58        |
| 49 | Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows. Physical<br>Review Letters, 2016, 117, 134501.                               | 2.9 | 57        |
| 50 | Feedback control of three-dimensional optimal disturbances using reduced-order models. Journal of<br>Fluid Mechanics, 2011, 677, 63-102.                            | 1.4 | 56        |
| 51 | Three-dimensional instability of the flow around a rotating circular cylinder. Journal of Fluid<br>Mechanics, 2013, 730, 5-18.                                      | 1.4 | 56        |
| 52 | First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder.<br>Journal of Fluid Mechanics, 2012, 701, 201-227.            | 1.4 | 55        |
| 53 | Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. Journal of Fluid<br>Mechanics, 2017, 816, 43-70.                                  | 1.4 | 55        |
| 54 | Droplets in homogeneous shear turbulence. Journal of Fluid Mechanics, 2019, 876, 962-984.                                                                           | 1.4 | 54        |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. European<br>Journal of Mechanics, B/Fluids, 2007, 26, 64-82.                            | 1.2 | 52        |
| 56 | Active suspensions in thin films: nutrient uptake and swimmer motion. Journal of Fluid Mechanics, 2013, 733, 528-557.                                                            | 1.4 | 52        |
| 57 | A microfluidic device to sort capsules by deformability: a numerical study. Soft Matter, 2014, 10,<br>7705-7711.                                                                 | 1.2 | 49        |
| 58 | Interface-resolved simulations of small inertial particles in turbulent channel flow. Journal of Fluid<br>Mechanics, 2020, 883, .                                                | 1.4 | 49        |
| 59 | Numerical simulations of emulsions in shear flows. Acta Mechanica, 2019, 230, 667-682.                                                                                           | 1.1 | 48        |
| 60 | Computational modeling of multiphase viscoelastic and elastoviscoplastic flows. International<br>Journal for Numerical Methods in Fluids, 2018, 88, 521-543.                     | 0.9 | 47        |
| 61 | Channel flow of rigid sphere suspensions: Particle dynamics in the inertial regime. International<br>Journal of Multiphase Flow, 2016, 78, 12-24.                                | 1.6 | 46        |
| 62 | Rheology of suspensions of viscoelastic spheres: Deformability as an effective volume fraction.<br>Physical Review Fluids, 2018, 3, .                                            | 1.0 | 46        |
| 63 | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers. Physics of Fluids, 2015, 27, .                                                                            | 1.6 | 45        |
| 64 | Flexible Fiber Reveals the Two-Point Statistical Properties of Turbulence. Physical Review Letters, 2018, 121, 044501.                                                           | 2.9 | 44        |
| 65 | Model Reduction of the Nonlinear Complex Ginzburg–Landau Equation. SIAM Journal on Applied<br>Dynamical Systems, 2010, 9, 1284-1302.                                             | 0.7 | 43        |
| 66 | Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. Journal of<br>Fluid Mechanics, 2018, 843, 450-478.                                     | 1.4 | 40        |
| 67 | Transition delay in a boundary layer flow using active control. Journal of Fluid Mechanics, 2013, 731, 288-311.                                                                  | 1.4 | 39        |
| 68 | Reduced particle settling speed in turbulence. Journal of Fluid Mechanics, 2016, 808, 153-167.                                                                                   | 1.4 | 39        |
| 69 | DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence. International Journal of Heat and Fluid Flow, 2008, 29, 841-855.       | 1.1 | 38        |
| 70 | The planar X-junction flow: stability analysis and control. Journal of Fluid Mechanics, 2014, 753, 1-28.                                                                         | 1.4 | 38        |
| 71 | Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. Journal of Fluid Mechanics, 2017, 831, 655-674. | 1.4 | 38        |
| 72 | Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. International Journal of Heat and Fluid Flow, 2018, 71, 189-199.       | 1.1 | 37        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Transition to turbulence in the boundary layer over a smooth and rough swept plate exposed to free-stream turbulence. Journal of Fluid Mechanics, 2010, 646, 297-325.                | 1.4 | 36        |
| 74 | Towards minimal perturbations in transitional plane Couette flow. Physical Review E, 2010, 82, 026316.                                                                               | 0.8 | 36        |
| 75 | Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. Journal of<br>Fluid Mechanics, 2015, 766, 104-128.                                              | 1.4 | 36        |
| 76 | Turbulence modulation in channel flow of finite-size spheroidal particles. Journal of Fluid<br>Mechanics, 2019, 859, 887-901.                                                        | 1.4 | 36        |
| 77 | Self-similar transport of inertial particles in a turbulent boundary layer. Journal of Fluid Mechanics, 2012, 706, 584-596.                                                          | 1.4 | 35        |
| 78 | Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow.<br>Journal of Fluid Mechanics, 2015, 768, 113-140.                             | 1.4 | 34        |
| 79 | Aspect ratio effect on particle transport in turbulent duct flows. Physics of Fluids, 2016, 28, .                                                                                    | 1.6 | 34        |
| 80 | An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces. Journal of Computational Physics, 2018, 353, 435-459. | 1.9 | 34        |
| 81 | Secondary threshold amplitudes for sinuous streak breakdown. Physics of Fluids, 2011, 23, .                                                                                          | 1.6 | 33        |
| 82 | Suspensions of deformable particles in a Couette flow. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 3-11.                                                                    | 1.0 | 33        |
| 83 | Coherent structures in the turbulent channel flow of an elastoviscoplastic fluid. Journal of Fluid<br>Mechanics, 2020, 888, .                                                        | 1.4 | 33        |
| 84 | Enhanced secondary motion of the turbulent flow through a porous square duct. Journal of Fluid<br>Mechanics, 2015, 784, 681-693.                                                     | 1.4 | 32        |
| 85 | Particle transport in turbulent curved pipe flow. Journal of Fluid Mechanics, 2016, 793, 248-279.                                                                                    | 1.4 | 32        |
| 86 | Rheology of Confined Non-Brownian Suspensions. Physical Review Letters, 2016, 116, 018301.                                                                                           | 2.9 | 32        |
| 87 | Inertial migration of a deformable particle in pipe flow. Physical Review Fluids, 2019, 4, .                                                                                         | 1.0 | 31        |
| 88 | Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. Journal of Fluid<br>Mechanics, 2014, 760, 278-303.                                              | 1.4 | 30        |
| 89 | Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids. Journal of Fluid Mechanics, 2018, 852, 329-357.             | 1.4 | 30        |
| 90 | Turbulent duct flow with polymers. Journal of Fluid Mechanics, 2019, 859, 1057-1083.                                                                                                 | 1.4 | 30        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Elastoviscoplastic flows in porous media. Journal of Non-Newtonian Fluid Mechanics, 2018, 258, 10-21.                                                                                 | 1.0 | 29        |
| 92  | Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon. Chemical Engineering Science, 2019, 193, 53-65.                            | 1.9 | 29        |
| 93  | Large Scale Accumulation Patterns of Inertial Particles in Wall-Bounded Turbulent Flow. Flow,<br>Turbulence and Combustion, 2011, 86, 519-532.                                        | 1.4 | 28        |
| 94  | The motion of a deforming capsule through a corner. Journal of Fluid Mechanics, 2015, 770, 374-397.                                                                                   | 1.4 | 28        |
| 95  | Turbulent channel flow of an elastoviscoplastic fluid. Journal of Fluid Mechanics, 2018, 853, 488-514.                                                                                | 1.4 | 28        |
| 96  | Stability of fluids with shear-dependent viscosity in the lid-driven cavity. Journal of Non-Newtonian<br>Fluid Mechanics, 2012, 173-174, 49-61.                                       | 1.0 | 25        |
| 97  | Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells. Journal of Fluid<br>Mechanics, 2019, 872, 818-848.                                                     | 1.4 | 25        |
| 98  | Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows.<br>Meccanica, 2020, 55, 331-342.                                                      | 1.2 | 25        |
| 99  | Broadening of Cloud Droplet Size Spectra by Stochastic Condensation: Effects of Mean Updraft<br>Velocity and CCN Activation. Journals of the Atmospheric Sciences, 2018, 75, 451-467. | 0.6 | 24        |
| 100 | Experimental investigation of turbulent suspensions of spherical particles in a squareÂduct. Journal of<br>Fluid Mechanics, 2018, 857, 748-783.                                       | 1.4 | 24        |
| 101 | The breakdown of Darcy's law in a soft porous material. Soft Matter, 2020, 16, 939-944.                                                                                               | 1.2 | 24        |
| 102 | Increase of turbulent drag by polymers in particle suspensions. Physical Review Fluids, 2020, 5, .                                                                                    | 1.0 | 24        |
| 103 | Motion of an elastic capsule in a constricted microchannel. European Physical Journal E, 2015, 38, 134.                                                                               | 0.7 | 23        |
| 104 | On the effect of coalescence on the rheology of emulsions. Journal of Fluid Mechanics, 2019, 880,<br>969-991.                                                                         | 1.4 | 23        |
| 105 | An Immersed Boundary Method for flows with evaporating droplets. International Journal of Heat and Mass Transfer, 2019, 143, 118563.                                                  | 2.5 | 23        |
| 106 | Flowing fibers as a proxy of turbulence statistics. Meccanica, 2020, 55, 357-370.                                                                                                     | 1.2 | 23        |
| 107 | Heat transfer in laminar Couette flow laden with rigid spherical particles. Journal of Fluid<br>Mechanics, 2018, 834, 308-334.                                                        | 1.4 | 22        |
| 108 | Suspensions of finite-size neutrally buoyant spheres in turbulent duct flow. Journal of Fluid<br>Mechanics, 2018, 851, 148-186.                                                       | 1.4 | 22        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Clustering and increased settling speed of oblate particles at finite Reynolds number. Journal of Fluid<br>Mechanics, 2018, 848, 696-721.                                   | 1.4 | 22        |
| 110 | Inertial migration in dilute and semidilute suspensions of rigid particles in laminar square duct flow.<br>Physical Review Fluids, 2017, 2, .                               | 1.0 | 22        |
| 111 | Modulation of homogeneous and isotropic turbulence in emulsions. Journal of Fluid Mechanics, 2022, 940, .                                                                   | 1.4 | 22        |
| 112 | Weakly nonlinear analysis of boundary layer receptivity to free-stream disturbances. Physics of Fluids, 2002, 14, 1426-1441.                                                | 1.6 | 21        |
| 113 | Dispersed Fibers Change the Classical Energy Budget of Turbulence via Nonlocal Transfer. Physical<br>Review Letters, 2020, 125, 114501.                                     | 2.9 | 21        |
| 114 | Near-wall turbulence modulation by small inertial particles. Journal of Fluid Mechanics, 2021, 922, .                                                                       | 1.4 | 21        |
| 115 | Numerical study of the stabilisation of boundary-layer disturbances by finite amplitude streaks.<br>International Journal of Flow Control, 2010, 2, 259-288.                | 0.4 | 21        |
| 116 | Numerical study of filament suspensions at finite inertia. Journal of Fluid Mechanics, 2020, 882, .                                                                         | 1.4 | 20        |
| 117 | Streak instability in viscoelastic Couette flow. Physical Review Fluids, 2017, 2, .                                                                                         | 1.0 | 20        |
| 118 | Dynamics of Three-Dimensional Turbulent Wall Plumes and Implications for Estimates of Submarine<br>Glacier Melting. Journal of Physical Oceanography, 2018, 48, 1941-1950.  | 0.7 | 19        |
| 119 | Effective slip over partially filled microcavities and its possible failure. Physical Review Fluids, 2018, 3,                                                               | 1.0 | 19        |
| 120 | Entropy Generation in a Boundary Layer Transitioning Under the Influence of Freestream Turbulence.<br>Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, . | 0.8 | 18        |
| 121 | Modal and non-modal stability of particle-laden channel flow. Physics of Fluids, 2011, 23, .                                                                                | 1.6 | 18        |
| 122 | Statistics of polymer extensions in turbulent channel flow. Physical Review E, 2012, 86, 056314.                                                                            | 0.8 | 17        |
| 123 | Numerical study of hot and cold spheroidal particles in a viscous fluid. International Journal of Heat and Mass Transfer, 2020, 149, 119206.                                | 2.5 | 17        |
| 124 | GPU acceleration of CaNS for massively-parallel direct numerical simulations of canonical fluid flows. Computers and Mathematics With Applications, 2021, 81, 502-511.      | 1.4 | 17        |
| 125 | The dynamics of a capsule in a wall-bounded oscillating shear flow. Physics of Fluids, 2015, 27, .                                                                          | 1.6 | 16        |
| 126 | Numerical simulations of elastic capsules with nucleus in shear flow. European Journal of Computational Mechanics, 2017, 26, 131-153.                                       | 0.6 | 16        |

| #   | Article                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Inertial settling of flexible fiber suspensions. Physical Review Fluids, 2020, 5, .                                                                             | 1.0 | 16        |
| 128 | Finite-size evaporating droplets in weakly compressible homogeneous shear turbulence. Journal of<br>Fluid Mechanics, 2022, 934, .                               | 1.4 | 16        |
| 129 | Settling of finite-size particles in turbulence at different volume fractions. Acta Mechanica, 2019, 230, 413-430.                                              | 1.1 | 15        |
| 130 | Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear<br>turbulence. Journal of Fluid Mechanics, 2020, 899, .       | 1.4 | 15        |
| 131 | Turbophoresis attenuation in a turbulent channel flow with polymer additives. Journal of Fluid Mechanics, 2013, 732, 706-719.                                   | 1.4 | 14        |
| 132 | Transition and self-sustained turbulence in dilute suspensions of finite-size particles. Theoretical and Applied Mechanics Letters, 2015, 5, 121-125.           | 1.3 | 14        |
| 133 | Turbulent channel flow of a dense binary mixture of rigid particles. Journal of Fluid Mechanics, 2017, 818, 623-645.                                            | 1.4 | 14        |
| 134 | A numerical approach for particle-vortex interactions based on volume-averaged equations.<br>International Journal of Multiphase Flow, 2018, 104, 188-205.      | 1.6 | 14        |
| 135 | Regimes of heat transfer in finite-size particle suspensions. International Journal of Heat and Mass<br>Transfer, 2021, 177, 121514.                            | 2.5 | 14        |
| 136 | Stochastic approach to the receptivity problem applied to bypass transition in boundary layers.<br>Physics of Fluids, 2008, 20, 024108.                         | 1.6 | 13        |
| 137 | Interaction between a Vertical Turbulent Jet and a Thermocline. Journal of Physical Oceanography, 2016, 46, 3415-3437.                                          | 0.7 | 13        |
| 138 | Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids.<br>International Journal of Multiphase Flow, 2019, 112, 116-129. | 1.6 | 13        |
| 139 | The effect of droplet coalescence on drag in turbulent channel flows. Physics of Fluids, 2021, 33, .                                                            | 1.6 | 13        |
| 140 | Numerical study of laminar-turbulent transition in particle-laden channel flow. Physical Review E, 2013, 87, 043011.                                            | 0.8 | 12        |
| 141 | Particle Velocity and Acceleration in Turbulent Bent Pipe Flows. Flow, Turbulence and Combustion, 2015, 95, 539-559.                                            | 1.4 | 12        |
| 142 | Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow.<br>International Journal of Heat and Mass Transfer, 2020, 160, 120184.  | 2.5 | 12        |
| 143 | Linear stability of particle laden flows: the influence of added mass, fluid acceleration and Basset history force. Meccanica, 2014, 49, 811-827.               | 1.2 | 11        |
| 144 | The effect of polydispersity in a turbulent channel flow laden with finite-size particles. European<br>Journal of Mechanics, B/Fluids, 2018, 67, 54-64.         | 1.2 | 11        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A mass-preserving interface-correction level set/ghost fluid method for modeling of<br>three-dimensional boiling flows. International Journal of Heat and Mass Transfer, 2020, 162, 120382.          | 2.5 | 11        |
| 146 | Numerical simulations of vorticity banding of emulsions in shear flows. Soft Matter, 2020, 16, 2854-2863.                                                                                            | 1.2 | 11        |
| 147 | Buoyant finite-size particles in turbulent duct flow. Physical Review Fluids, 2019, 4, .                                                                                                             | 1.0 | 11        |
| 148 | Particle migration in channel flow of an elastoviscoplastic fluid. Journal of Non-Newtonian Fluid<br>Mechanics, 2020, 284, 104376.                                                                   | 1.0 | 10        |
| 149 | The impact of porous walls on the rheology of suspensions. Chemical Engineering Science, 2021, 230, 116178.                                                                                          | 1.9 | 10        |
| 150 | Role of large-scale advection and small-scale turbulence on vertical migration of gyrotactic swimmers. Physical Review Fluids, 2019, 4, .                                                            | 1.0 | 10        |
| 151 | A criterion for when an emulsion drop undergoing turbulent deformation has reached a critically deformed state. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129213. | 2.3 | 10        |
| 152 | Corrections for one- and two-point statistics measured with coarse-resolution particle image velocimetry. Experiments in Fluids, 2014, 55, 1.                                                        | 1.1 | 9         |
| 153 | Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor<br>Turbulence. Physical Review Letters, 2018, 121, 224501.                                              | 2.9 | 9         |
| 154 | Modal and non-modal linear stability of Poiseuille flow through a channel with a porous substrate.<br>European Journal of Mechanics, B/Fluids, 2019, 75, 29-43.                                      | 1.2 | 9         |
| 155 | Low Reynolds number turbulent flows over elastic walls. Physics of Fluids, 2020, 32, .                                                                                                               | 1.6 | 9         |
| 156 | Single sediment dynamics in turbulent flow over a porous bed – insights from interface-resolved simulations. Journal of Fluid Mechanics, 2020, 893, .                                                | 1.4 | 9         |
| 157 | Numerical simulations of a sphere settling in simple shear flows of yield stress fluids. Journal of<br>Fluid Mechanics, 2020, 896, .                                                                 | 1.4 | 9         |
| 158 | A fully Eulerian hybrid immersed boundary-phase field model for contact line dynamics on complex geometries. Journal of Computational Physics, 2021, 443, 110468.                                    | 1.9 | 9         |
| 159 | A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer.<br>Journal of Computational Physics, 2022, 448, 110730.                                                  | 1.9 | 9         |
| 160 | Turbulence in a network of rigid fibers. Physical Review Fluids, 2020, 5, .                                                                                                                          | 1.0 | 9         |
| 161 | Numerical study of boundary-layer receptivity on a swept wing. , 2011, , .                                                                                                                           |     | 8         |
| 162 | Statistics of Particle Accumulation in Spatially Developing Turbulent Boundary Layers. Flow,<br>Turbulence and Combustion, 2014, 92, 27-40.                                                          | 1.4 | 8         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Turbulent flow of finite-size spherical particles in channels with viscous hyper-elastic walls. Journal of Fluid Mechanics, 2019, 873, 410-440.                                                         | 1.4 | 8         |
| 164 | Finite-size spherical particles in a square duct flow of an elastoviscoplastic fluid: anÂexperimental<br>study. Journal of Fluid Mechanics, 2020, 883, .                                                | 1.4 | 8         |
| 165 | Sedimentation of finite-size particles in quiescent wall-bounded shear-thinning and Newtonian fluids.<br>International Journal of Multiphase Flow, 2020, 129, 103291.                                   | 1.6 | 8         |
| 166 | Suspensions of deformable particles in Poiseuille flows at finite inertia. Fluid Dynamics Research, 2020, 52, 065507.                                                                                   | 0.6 | 8         |
| 167 | Effect of elastic walls on suspension flow. Physical Review Fluids, 2019, 4, .                                                                                                                          | 1.0 | 8         |
| 168 | A data-driven model based on modal decomposition: application to the turbulent channel flow over an anisotropic porous wall. Journal of Fluid Mechanics, 2022, 939, .                                   | 1.4 | 8         |
| 169 | Deformation and initial breakup morphology of viscous emulsion drops in isotropic homogeneous<br>turbulence with relevance for emulsification devices. Chemical Engineering Science, 2022, 253, 117599. | 1.9 | 8         |
| 170 | Dynamics of a Turbulent Buoyant Plume in a Stratified Fluid: An Idealized Model of Subglacial<br>Discharge in Greenland Fjords. Journal of Physical Oceanography, 2017, 47, 2611-2630.                  | 0.7 | 7         |
| 171 | Flow structures and shear-stress predictions in the turbulent channel flow over an anisotropic porous wall. Journal of Physics: Conference Series, 2020, 1522, 012016.                                  | 0.3 | 7         |
| 172 | Symmetry Breaking of Tail-Clamped Filaments in Stokes Flow. Physical Review Letters, 2021, 126, 124501.                                                                                                 | 2.9 | 7         |
| 173 | Orientation instability of settling spheroids in a linearly density-stratified fluid. Journal of Fluid<br>Mechanics, 2021, 929, .                                                                       | 1.4 | 7         |
| 174 | A Direct Numerical Simulation Investigation of the One-Phase Flow in a Simplified Emulsification<br>Device. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .                       | 0.8 | 7         |
| 175 | Feedback Control of Boundary Layer Bypass Transition: Experimental and Numerical Progress. , 2009, , .                                                                                                  |     | 6         |
| 176 | Identifying Turbulent Spots in Transitional Boundary Layers. Journal of Turbomachinery, 2013, 135, .                                                                                                    | 0.9 | 6         |
| 177 | Flow-assisted droplet assembly in a 3D microfluidic channel. Soft Matter, 2019, 15, 3451-3460.                                                                                                          | 1.2 | 6         |
| 178 | Utilizing the ball lens effect for astigmatism particle tracking velocimetry. Experiments in Fluids, 2020, 61, 1.                                                                                       | 1.1 | 5         |
| 179 | An interface capturing method for liquid-gas flows at low-Mach number. Computers and Fluids, 2021, 216, 104789.                                                                                         | 1.3 | 5         |
| 180 | Effect of finite Weissenberg number on turbulent channel flows of an elastoviscoplastic fluid.<br>Journal of Fluid Mechanics, 2021, 927, .                                                              | 1.4 | 5         |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Feedback Control of Boundary-Layer Bypass Transition: Comparison of Simulations with Experiments.<br>AIAA Journal, 2010, 48, 1848-1851.                              | 1.5 | 4         |
| 182 | Rotational propulsion enabled by inertia. European Physical Journal E, 2014, 37, 16.                                                                                 | 0.7 | 4         |
| 183 | On the time scales and structure of LagrangianÂintermittency in homogeneous isotropic turbulence.<br>Journal of Fluid Mechanics, 2019, 867, 438-481.                 | 1.4 | 4         |
| 184 | Analogue tuning of particle focusing in elasto-inertial flow. Meccanica, 2021, 56, 1739-1749.                                                                        | 1.2 | 4         |
| 185 | Fiber Tracking Velocimetry for Two-Point Statistics of Turbulence. Physical Review X, 2021, 11, .                                                                    | 2.8 | 4         |
| 186 | Effect of viscosity ratio on the self-sustained instabilities in planar immiscible jets. Physical Review<br>Fluids, 2017, 2, .                                       | 1.0 | 4         |
| 187 | Theory of hydrodynamic interaction of two spheres in wall-bounded shear flow. Physical Review Fluids, 2020, 5, .                                                     | 1.0 | 4         |
| 188 | LES and RANS calculations of particle dispersion behind a wall-mounted cubic obstacle. International<br>Journal of Multiphase Flow, 2022, 151, 104037.               | 1.6 | 4         |
| 189 | A dual resolution phaseâ€field solver for wetting of viscoelastic droplets. International Journal for<br>Numerical Methods in Fluids, 2022, 94, 1517-1541.           | 0.9 | 4         |
| 190 | Turbulent Rayleigh–Bénard convection in non-colloidal suspensions. Journal of Fluid Mechanics,<br>2022, 945, .                                                       | 1.4 | 4         |
| 191 | Numerical simulation of the coalescence-induced polymeric droplet jumping on superhydrophobic surfaces. Journal of Non-Newtonian Fluid Mechanics, 2022, 307, 104872. | 1.0 | 4         |
| 192 | EXPERIMENTAL STUDY OF THE STABILIZATION OF TOLLMIEN-SCHLICHTINGWAVES BY FINITE AMPLITUDE STREAKS. , 2006, , 299-304.                                                 |     | 3         |
| 193 | Integral representation of channel flow with interacting particles. Physical Review E, 2017, 96, 063110.                                                             | 0.8 | 3         |
| 194 | Interface-resolved simulations of small inertial particles in turbulent channel flow – CORRIGENDUM.<br>Journal of Fluid Mechanics, 2020, 891, .                      | 1.4 | 3         |
| 195 | The effect of free-stream turbulence on growth and breakdown of Tollmien-Schlichting waves. , 2007, , 179-181.                                                       |     | 3         |
| 196 | Irreversibility and rate dependence in sheared adhesive suspensions. Physical Review Fluids, 2021, 6, .                                                              | 1.0 | 3         |
| 197 | Spatial linear disturbances in a plane wall jet. Physics of Fluids, 2012, 24, 054104.                                                                                | 1.6 | 2         |
| 198 | Hydrodynamic Focusing of an Elastic Capsule in Stokes flow: An Exploratory Numerical Study.<br>Procedia IUTAM, 2015, 16, 41-49.                                      | 1.2 | 2         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Numerical simulations of oscillatory shear flow of particle suspensions at finite inertia. Rheologica<br>Acta, 2019, 58, 741-753.                                              | 1.1 | 2         |
| 200 | NUMERICAL STUDIES OF STREAK INSTABILITY IN BOUNDARY LAYERS. Fluid Mechanics and Its Applications, 2006, , 121-126.                                                             | 0.1 | 2         |
| 201 | Numerical Approaches to Complex Fluids. Soft and Biological Matter, 2019, , 1-34.                                                                                              | 0.3 | 2         |
| 202 | DNS of Spatially-Developing Three-Dimensional Turbulent Boundary Layers. ERCOFTAC Series, 2010, , 55-61.                                                                       | 0.1 | 2         |
| 203 | Linear control of 3D disturbances on a flat-plate. IUTAM Symposium on Cellular, Molecular and Tissue<br>Mechanics, 2010, , 373-378.                                            | 0.1 | 2         |
| 204 | Interface-resolved simulations of the confinement effect on the sedimentation of a sphere in yield-stress fluids. Journal of Non-Newtonian Fluid Mechanics, 2022, 303, 104787. | 1.0 | 2         |
| 205 | A phase-field method for three-phase flows with icing. Journal of Computational Physics, 2022, 458, 111104.                                                                    | 1.9 | 2         |
| 206 | Experimental Analysis of Transition Delay by Means of Roughness Elements. , 2006, , .                                                                                          |     | 1         |
| 207 | Transport of inertial particles in turbulent boundary layers. Journal of Physics: Conference Series, 2011, 318, 052020.                                                        | 0.3 | 1         |
| 208 | Nonlinear receptivity to oblique vortical modes in flow past an elliptic leading edge. Journal of<br>Turbulence, 2012, 13, N25.                                                | 0.5 | 1         |
| 209 | Transition delay and its implications for drag reduction in particle-laden channel flow. AIP Conference Proceedings, 2015, , .                                                 | 0.3 | 1         |
| 210 | Transition to Turbulence in Viscoelastic Channel Flow. Procedia IUTAM, 2015, 14, 519-526.                                                                                      | 1.2 | 1         |
| 211 | Transition to Turbulence in the Presence of Finite Size Particles. Procedia IUTAM, 2015, 14, 211-217.                                                                          | 1.2 | 1         |
| 212 | Localisation of optimal perturbations in variable viscosity channel flow. International Journal of<br>Heat and Fluid Flow, 2020, 85, 108588.                                   | 1.1 | 1         |
| 213 | Aerodynamically driven rupture of a liquid film by turbulent shear flow. Physical Review Fluids, 2020, 5, .                                                                    | 1.0 | 1         |
| 214 | Input-Output Analysis and Control Applied to Spatially Developing Shear Flows. , 2008, , .                                                                                     |     | 0         |
| 215 | Identifying Turbulent Spots in Transitional Boundary Layers. , 2011, , .                                                                                                       |     | 0         |
| 216 | Optimal disturbances above and upstream of a flat plate with an elliptic-type leading edge. Theoretical and Computational Fluid Dynamics, 2014, 28, 147-157.                   | 0.9 | 0         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | The planar X-junction flow: stability analysis and control – CORRIGENDUM. Journal of Fluid<br>Mechanics, 2014, 753, 560-560.                                                                                       | 1.4 | 0         |
| 218 | Editorial: Recent advances in hydrodynamic instability and transition to turbulence. Theoretical and Applied Mechanics Letters, 2015, 5, 101-102.                                                                  | 1.3 | 0         |
| 219 | Two-dimensional numerical simulation of the behavior of a circular capsule subject to an inclined centrifugal force near a plate in a fluid. Journal of Fluid Science and Technology, 2017, 12, JFST0015-JFST0015. | 0.2 | 0         |
| 220 | Numerical study of suspensions of nucleated capsules at finite inertia. Physical Review Fluids, 2021, 6, .                                                                                                         | 1.0 | 0         |
| 221 | Numerical simulations of small amplitude oscillatory shear flow of suspensions of rigid particles in non-Newtonian liquids at finite inertia. Journal of Rheology, 2021, 65, 821-835.                              | 1.3 | 0         |
| 222 | Direct Numerical Simulations of Streak Breakdown in Boundary Layers. ERCOFTAC Series, 2004, ,<br>175-196.                                                                                                          | 0.1 | 0         |
| 223 | Interaction of noise disturbances and streamwise streaks. Springer Proceedings in Physics, 2009, , 151-154.                                                                                                        | 0.1 | О         |