Cumali Sabah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MULTILAYER SYSTEM OF LORENTZ/DRUDE TYPE METAMATERIALS WITH DIELECTRIC SLABS AND ITS APPLICATION TO ELECTROMAGNETIC FILTERS. Progress in Electromagnetics Research, 2009, 91, 349-364.	1.6	113
2	Dual-band perfect metamaterial absorber for solar cell applications. Vacuum, 2015, 120, 68-74.	1.6	95
3	POLARIZATION ANGLE INDEPENDENT PERFECT METAMATERIAL ABSORBERS FOR SOLAR CELL APPLICATIONS IN THE MICROWAVE, INFRARED, AND VISIBLE REGIME. Progress in Electromagnetics Research, 2014, 144, 93-101.	1.6	94
4	Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Optics Communications, 2014, 322, 137-142.	1.0	94
5	Microwave metamaterial absorber for sensing applications. Opto-electronics Review, 2017, 25, 318-325.	2.4	92
6	Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Optics Communications, 2017, 392, 31-38.	1.0	78
7	Solar energy harvesting with ultra-broadband metamaterial absorber. International Journal of Modern Physics B, 2019, 33, 1950056.	1.0	78
8	Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting. Plasmonics, 2016, 11, 1313-1321.	1.8	77
9	Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications. Journal of Alloys and Compounds, 2016, 671, 43-50.	2.8	74
10	DESIGN OF POLARIZATION AND INCIDENT ANGLE INSENSITIVE DUAL-BAND METAMATERIAL ABSORBER BASED ON ISOTROPIC RESONATORS. Progress in Electromagnetics Research, 2014, 144, 123-132.	1.6	71
11	Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application. Journal of Alloys and Compounds, 2016, 680, 473-479.	2.8	71
12	Design and study of a metamaterial based sensor for the application of liquid chemicals detection. Journal of Materials Research and Technology, 2020, 9, 10291-10304.	2.6	60
13	Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1058.	0.9	59
14	Perfect metamaterial absorber design for solar cell applications. Waves in Random and Complex Media, 2015, 25, 382-392.	1.6	58
15	Wideband Microwave Absorber Comprising Metallic Split-Ring Resonators Surrounded With E-Shaped Fractal Metamaterial. IEEE Access, 2021, 9, 5670-5677.	2.6	57
16	DESIGN OF A TERAHERTZ POLARIZATION ROTATOR BASED ON A PERIODIC SEQUENCE OF CHIRAL-METAMATERIAL AND DIELECTRIC SLABS. Progress in Electromagnetics Research, 2012, 124, 301-314.	1.6	55
17	Tunable perfect metamaterial absorber and sensor applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 12091-12099.	1.1	55
18	TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS. Progress in Electromagnetics Research B, 2010, 22, 341-357.	0.7	53

#	Article	IF	CITATIONS
19	Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 1-6.	1.3	51
20	Fishnet based metamaterial loaded THz patch antenna. Optical and Quantum Electronics, 2016, 48, 1.	1.5	50
21	Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik, 2018, 161, 12-19.	1.4	47
22	DUAL-BAND POLARIZATION INDEPENDENT METAMATERIAL ABSORBER BASED ON OMEGA RESOANATOR AND OCTA-STAR STRIP CONFIGURATION. Progress in Electromagnetics Research, 2013, 141, 219-231.	1.6	46
23	Fluid, Strain and Rotation Sensing Applications by Using Metamaterial Based Sensor. Journal of the Electrochemical Society, 2017, 164, B567-B573.	1.3	46
24	Microfluidic and Fuel Adulteration Sensing by Using Chiral Metamaterial Sensor. Journal of the Electrochemical Society, 2018, 165, B475-B483.	1.3	46
25	Terahertz sensing application by using planar split-ring-resonator structures. Microsystem Technologies, 2012, 18, 2071-2076.	1.2	43
26	ASYMMETRIC TRANSMISSION OF LINEARLY POLARIZED WAVES AND DYNAMICALLY WAVE ROTATION USING CHIRAL METAMATERIAL. Progress in Electromagnetics Research, 2013, 140, 227-239.	1.6	43
27	A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 89-93.	2.2	43
28	The analysis on sun tracking and cooling systems for photovoltaic panels. Renewable and Sustainable Energy Reviews, 2013, 22, 598-603.	8.2	42
29	Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory. Journal of Electronic Materials, 2014, 43, 3949-3953.	1.0	42
30	Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Science, 2014, 49, 306-314.	0.8	42
31	Cross-like terahertz metamaterial absorber for sensing applications. Pramana - Journal of Physics, 2018, 91, 1.	0.9	42
32	Enhancement of image quality by using metamaterial inspired energy harvester. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126041.	0.9	41
33	Multiband Metamaterials Based on Multiple Concentric Open-Ring Resonators Topology. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8500808-8500808.	1.9	40
34	Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 9735-9740.	1.1	40
35	Graphene-based wideband metamaterial absorber for solar cells application. Journal of Nanophotonics, 2017, 11, 036008.	0.4	40
36	Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab. Opto-electronics Review, 2007, 15, .	2.4	39

#	Article	IF	CITATIONS
37	Multi-band metamaterial absorber topology for infrared frequency regime. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 44-51.	1.3	37
38	Broad band metamaterial absorber based on wheel resonators with lumped elements for microwave energy harvesting. Optical and Quantum Electronics, 2018, 50, 1.	1.5	37
39	Design and analysis of perfect metamaterial absorber in GHz and THz frequencies. Journal of Electromagnetic Waves and Applications, 2015, 29, 2492-2500.	1.0	34
40	Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8ÂGHz. Optical Engineering, 2018, 57, 1.	0.5	34
41	Dual-band polarization-independent sub-terahertz fishnet metamaterial. Current Applied Physics, 2012, 12, 443-450.	1.1	33
42	Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. Journal of Electromagnetic Waves and Applications, 2014, 28, 741-751.	1.0	33
43	Uâ€shaped frequency selective surfaces for single―and dualâ€band applications together with absorber and sensor configurations. IET Microwaves, Antennas and Propagation, 2016, 10, 293-300.	0.7	33
44	NOVEL, DUAL BAND, SINGLE AND DOUBLE NEGATIVE METAMATERIALS: NONCONCENTRIC DELTA LOOP RESONATORS. Progress in Electromagnetics Research B, 2010, 25, 225-239.	0.7	31
45	TRANSMISSION TUNNELING THROUGH THE MULTILAYER DOUBLE-NEGATIVE AND DOUBLE-POSITIVE SLABS. Progress in Electromagnetics Research, 2013, 138, 293-306.	1.6	31
46	Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band. Optical Engineering, 2015, 54, 097102.	0.5	31
47	Design of a wide band metasurface as a linear to circular polarization converter. Modern Physics Letters B, 2017, 31, 1750274.	1.0	31
48	Biosensor applications of chiral metamaterials for marrowbone temperature sensing. Journal of Electromagnetic Waves and Applications, 2015, 29, 2393-2403.	1.0	30
49	Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers. Journal of Alloys and Compounds, 2016, 687, 514-520.	2.8	30
50	Sensory applications of resonator based metamaterial absorber. Optik, 2018, 168, 741-746.	1.4	29
51	Improvement in dye sensitized solar cells from past to present. Optical and Quantum Electronics, 2018, 50, 1.	1.5	27
52	RESOLVING PHASE AMBIGUITY IN THE INVERSE PROBLEM OF REFLECTION-ONLY MEASUREMENT METHODS. Progress in Electromagnetics Research, 2012, 129, 405-420.	1.6	26
53	Design and characterization of a resonator-based metamaterial and its sensor application using microstrip technology. Optical Engineering, 2016, 55, 027107.	0.5	26
54	Transmission Line Integrated Metamaterial Based Liquid Sensor. Journal of the Electrochemical Society, 2018, 165, B251-B257.	1.3	26

#	Article	IF	CITATIONS
55	A Comprehensive Study on Fuel Adulteration Sensing by Using Triple Ring Resonator Type Metamaterial. Journal of the Electrochemical Society, 2019, 166, B1044-B1052.	1.3	26
56	Numerical and experimental investigation of fishnet-based metamaterial in a X-band waveguide. Journal Physics D: Applied Physics, 2011, 44, 255101.	1.3	25
57	Multiband planar metamaterials. Microwave and Optical Technology Letters, 2011, 53, 2255-2258.	0.9	25
58	New-Generation Chiral Metamaterials Based on Rectangular Split Ring Resonators With Small and Constant Chirality Over a Certain Frequency Band. IEEE Transactions on Antennas and Propagation, 2014, 62, 5745-5751.	3.1	25
59	Multi-band polarization independent cylindrical metamaterial absorber and sensor application. Modern Physics Letters B, 2016, 30, 1650095.	1.0	25
60	Strong absorption of solar energy by using wide band metamaterial absorber designed with plus-shaped resonators. International Journal of Modern Physics B, 2018, 32, 1850275.	1.0	25
61	Experimental analysis of $\hat{\mathbf{b}}$ -shaped magnetic resonator for mu-negative metamaterials. Optics Communications, 2013, 294, 409-413.	1.0	24
62	Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. International Journal of Modern Physics B, 2016, 30, 1650133.	1.0	24
63	Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Optical and Quantum Electronics, 2017, 49, 1.	1.5	24
64	Metamaterial absorber-based multisensor applications using a meander-line resonator. Optical Engineering, 2017, 56, 1.	0.5	24
65	Microwave response of octagon-shaped parallel plates: Low-loss metamaterial. Optics Communications, 2012, 285, 4549-4552.	1.0	23
66	Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications. IET Optoelectronics, 2016, 10, 211-216.	1.8	23
67	Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples. Journal of Electronic Materials, 2017, 46, 4955-4962.	1.0	23
68	Transmission measurements of a new metamaterial sample with negative refraction index. Physica B: Condensed Matter, 2010, 405, 2955-2958.	1.3	22
69	Broadside-coupled triangular split-ring-resonators for terahertz sensing. EPJ Applied Physics, 2013, 61, 30402.	0.3	22
70	Metamaterial absorberâ€based sensor embedded into Xâ€band waveguide. Electronics Letters, 2014, 50, 1074-1076.	0.5	22
71	Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. Journal of Computational Electronics, 2016, 15, 228-238.	1.3	22
72	Multi-Resonant Metamaterial Design Based On Concentric V-Shaped Magnetic Resonators. Journal of Electromagnetic Waves and Applications, 2012, 26, 1105-1115.	1.0	20

#	Article	IF	CITATIONS
73	Metamaterial-based energy harvesting for GSM and satellite communication frequency bands. Optical Engineering, 2018, 57, 1.	0.5	20
74	RETRIEVAL OF EFFECTIVE ELECTROMAGNETIC PARAMETERS OF ISOTROPIC METAMATERIALS USING REFERENCE-PLANE INVARIANT EXPRESSIONS. Progress in Electromagnetics Research, 2012, 132, 425-441.	1.6	19
75	Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs. Optics Express, 2012, 20, 29002.	1.7	18
76	Metamaterial characterization by applying different boundary conditions on triangular split ring resonator type metamaterials. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2188.	1.2	18
77	Chiral metamaterial structures with strong optical activity and their applications. Optical Engineering, 2014, 53, 107101.	0.5	16
78	Zinc oxide–tungstenâ€based pyramids in construction of ultraâ€broadband metamaterial absorber for solar energy harvesting. IET Optoelectronics, 2017, 11, 114-120.	1.8	16
79	Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator. Bulletin of Materials Science, 2020, 43, 1.	0.8	16
80	Microwave power imaging detector based on metamaterial absorber. Optical Engineering, 2020, 59, .	0.5	16
81	Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities. Journal of Applied Physics, 2011, 110, .	1.1	15
82	Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Applied Physics A: Materials Science and Processing, 2012, 108, 457-463.	1.1	15
83	Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method. Journal of Industrial Textiles, 2015, 45, 298-309.	1.1	15
84	Implementation of a perfect metamaterial absorber into multi-functional sensor applications. Modern Physics Letters B, 2017, 31, 1750176.	1.0	15
85	Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil. Bulletin of Materials Science, 2018, 41, 1.	0.8	15
86	Terahertz metamaterial absorber comprised of H-shaped resonator within split-square ring and its sensory application. Optik, 2019, 192, 162976.	1.4	15
87	Multi-band (9,4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Optics and Laser Technology, 2021, 134, 106623.	2.2	15
88	Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells. Journal of Nanophotonics, 2018, 12, 1.	0.4	15
89	Left-handed chiral metamaterials. Open Physics, 2008, 6, .	0.8	14
90	Wideband Negative Permittivity and Double Negative Fishnet-Mushroom-Like Metamaterial in X-Band Waveguide. Advances in Condensed Matter Physics, 2017, 2017, 1-7.	0.4	14

#	Article	IF	CITATIONS
91	Reflection and transmission coefficients of multiple chiral layers. Science in China Series D: Earth Sciences, 2006, 49, 457-467.	0.9	13
92	Polarization angle insensitive dual-band perfect metamaterial absorber for solar cell applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1241-1245.	0.8	13
93	Metamaterial-based fluid sensor for identifying different types of fuel oil samples. Chinese Journal of Physics, 2018, 56, 1872-1878.	2.0	13
94	Metamaterial sensor application concrete material reinforced with carbon steel fiber. Modern Physics Letters B, 2020, 34, 2050097.	1.0	13
95	Diamond-shaped hole array in double-layer metal sheets for negative index of refraction. Journal of Electromagnetic Waves and Applications, 2013, 27, 413-420.	1.0	12
96	Power analysis of multilayer structures composed of conventional materials and bi-anisotropic metamaterial slabs. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 939.	0.9	12
97	Investigation of microwave metamaterial based on H-shaped resonator in a waveguide configuration and its sensor and absorber applications. Journal of Electromagnetic Waves and Applications, 2015, 29, 819-831.	1.0	12
98	Multifunctional metamaterial sensor applications based on chiral nihility. Optical and Quantum Electronics, 2017, 49, 1.	1.5	12
99	Effect of the Metallization on the Resonances of THz Fishnet Metamaterials. Journal of the European Optical Society-Rapid Publications, 0, 7, .	0.9	11
100	Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band. Modern Physics Letters B, 2014, 28, 1450250.	1.0	11
101	Fourcross shaped metamaterial filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves. Superconductor Science and Technology, 2017, 30, 074006.	1.8	11
102	Some aspects of mass-energy equivalence which appears in left-handed metamaterials. EPJ Applied Metamaterials, 2019, 6, 16.	0.8	11
103	Microfluidic sensor applications by using chiral metamaterial. Modern Physics Letters B, 2020, 34, 2050031.	1.0	11
104	Operating Frequency Reconfiguration Study for a Split Ring Resonator Based Microfluidic Sensor. Journal of the Electrochemical Society, 2020, 167, 147512.	1.3	11
105	High Reflection Coatings with Negative and Positive Refractive Indexes. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2009, 5, 601-604.	0.4	11
106	APPLICATION OF A USEFUL UNCERTAINTY ANALYSIS AS A METRIC TOOL FOR ASSESSING THE PERFORMANCE OF ELECTROMAGNETIC PROPERTIES RETRIEVAL METHODS OF BIANISOTROPIC METAMATERIALS. Progress in Electromagnetics Research, 2012, 128, 365-380.	1.6	10
107	Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	10
108	Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 4777-4787.	1.1	10

#	Article	IF	CITATIONS
109	Metamaterial-based fuel sensor application with three rhombus slots. International Journal of Modern Physics B, 2019, 33, 1950276.	1.0	10
110	Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region. Optik, 2019, 177, 64-70.	1.4	10
111	Effects of Loss Factor on Plane Wave Propagation through a Left-Handed Material Slab. Acta Physica Polonica A, 2008, 113, 1589-1597.	0.2	10
112	Highly sensitive metamaterial-based microwave sensor for the application of milk and dairy products. Applied Optics, 2022, 61, 1972.	0.9	10
113	Metal mesh filters based on Ti, ITO and Cu thin films for terahertz waves. Optical and Quantum Electronics, 2016, 48, 1.	1.5	9
114	Metamaterial Absorber Based Multifunctional Sensors. Journal of the Electrochemical Society, 2016, 163, B319-B324.	1.3	8
115	Design and Fabrication of a Novel Wideband DNG Metamaterial with the Absorber Application in Microwave X-Band. Advances in Condensed Matter Physics, 2017, 2017, 1-8.	0.4	8
116	Characterization of chiral metamaterial sensor with high sensitivity. Optik, 2020, 202, 163673.	1.4	8
117	Alternative design of left-handed metamaterial based on circular resonator and wire strip for waveguide configurations with sensing and absorber applications. Optical Engineering, 2015, 54, 087101.	O.5	7
118	Single- and multi-walled carbon nanotubes for solar cell applications. International Journal of Modern Physics B, 2018, 32, 1830007.	1.0	7
119	Design of a linear to circular polarization converter integrated into a concrete construction for radome applications. International Journal of Microwave and Wireless Technologies, 2022, 14, 824-831.	1.5	7
120	Single- and double-sided sensor applications ofÂmetamaterials based on square-ring and diamond resonators for terahertz region. Modern Physics Letters B, 2017, 31, 1750072.	1.0	6
121	Bloch impedance analysis for a left handed transmission line. Journal of Electrical Engineering, 2012, 63, 310-315.	0.4	6
122	Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications. Optical Engineering, 2017, 56, 1.	0.5	5
123	Scattering Characteristics of Stratified Double Negative Stacks Using the Frequency Dispersive Cold Plasma Medium. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 247-253.	0.7	4
124	Periodic array of chiral metamaterial-dielectric slabs for the application as terahertz polarization rotator. , 2011, , .		4
125	A frequency tunable metamaterial resonator using varactor diodes. , 2016, , .		4
126	Thermally and optically tunable sub-terahertz superconducting fishnet metamaterial. Physica C: Superconductivity and Its Applications, 2018, 544, 46-53.	0.6	4

#	Article	IF	CITATIONS
127	A numerically stable algorithm for scattering from several circular cylinders including metamaterials with different boundary conditions. Optik, 2018, 168, 667-676.	1.4	4
128	Polarization independent triple-band (5,4) semiconducting carbon nanotube metamaterial absorber design for visible and ultraviolet regions. Journal of Nanophotonics, 2017, 11, 1.	0.4	4
129	Frequency Response of Multilayer Media Comprised of Double-Negative and Double-Positive Slabs. Chinese Physics Letters, 2007, 24, 1242-1244.	1.3	3
130	Refraction Characteristics of Cold Plasma Thin Film as a Left-Handed Metamaterial. Chinese Physics Letters, 2011, 28, 064204.	1.3	3
131	Tuning the electric resonance of a metamaterial based single-sided S-Shaped resonator. , 2014, , .		3
132	Photonic band gap engineering in two-dimensional photonic crystals and iso-frequency contours. Journal of Electromagnetic Waves and Applications, 2014, 28, 253-263.	1.0	3
133	Perfect metamaterial absorbers with polarization angle independencyÂin X-band waveguide. Modern Physics Letters B, 2016, 30, 1650186.	1.0	3
134	An indium tin oxide metasurface filter for terahertz applications: Design, fabrication, and characterization. Modern Physics Letters B, 2017, 31, 1750074.	1.0	3
135	Ultrathin thermally stable multiband metamaterial absorber design for solar energy applications. Journal of Nanophotonics, 2018, 12, 1.	0.4	3
136	High-pass filter characteristic of Bloch impedance in a left-handed transmission line. , 2007, , .		2
137	Transmission line modelling method for planar boundaries containing positive and negative index media. , 2008, , .		2
138	Composition of non-concentric triangular split ring resonators and wire strip for dual-band negative index metamaterials. , 2010, , .		2
139	Transmission tunneling through the periodic sequence of double-negative and double-positive layers. , 2013, , .		2
140	Ultra-sensitive dual-band metamaterial absorber based on symmetric resonators. , 2014, , .		2
141	Electromagnetic energy harvesting by using tunable metamaterial absorbers. , 2015, , .		2
142	90° Polarization rotator and antireflector using meanderline chiral metamaterials: Analytical and numerical approach. Optik, 2015, 126, 5587-5592.	1.4	2
143	Flexible chiral metamaterials with dynamically optical activity and high negative refractive index. Modern Physics Letters B, 2015, 29, 1550087.	1.0	2
144	Investigation of graphene-integrated tunable metamaterials in THz regime. Pramana - Journal of Physics, 2018, 90, 1.	0.9	2

Cumali Sabah

#	Article	IF	CITATIONS
145	Improvement of multiband absorption with different technics (graphene, ito, and hole) for metamaterial absorber at optical frequencies. Journal of Nanophotonics, 2018, 12, 1.	0.4	2
146	Perfect Metamaterial absorber based energy harvesting application in ISM Band. International Journal of Business & Technology, 2016, 4, .	0.0	2
147	Frequency dependence of Bloch impedance in left-handed transmission line. , 2007, , .		1
148	Characterization and analysis of left-handed chiral materials. , 2008, , .		1
149	Terahertz polarization rotator consists of chiral metamaterial and dielectric slabs. , 2011, , .		1
150	Dual-band polarization-independent fishnet metamaterial for terahertz frequency range. , 2011, , .		1
151	Zigzag metallic conductors as frequency selective surfaces. IET Microwaves, Antennas and Propagation, 2013, 7, 722-728.	0.7	1
152	Characterization of metamaterials using a new design and measurement technique for microstrip circuit applications. , 2014, , .		1
153	A novel left-handed metamaterial based on circular resonator and wire strip for waveguide applications. , 2014, , .		1
154	Energy harvesting through lumped elements located on metamaterial absorber particles. , 2015, , .		1
155	New generation planar chiral metamaterials with small and constant chirality over a certain frequency band. Modern Physics Letters B, 2015, 29, 1450257.	1.0	1
156	Increasing bandwidth in antenna applications By using chiral metamaterials. , 2015, , .		1
157	Dynamic and tunable chiral metamaterials with wideband constant chirality over a certain frequency band. Optik, 2015, 126, 4808-4812.	1.4	1
158	Design and analysis of a perfect metamaterial absorber for sub-terahertz frequencies. AIP Conference Proceedings, 2016, , .	0.3	1
159	A numerically stable algorithm for eccentrically metamaterial covered circular cylinders. , 2016, , .		1
160	Plasmonic resonances in sub-terahertz fishnet metamaterial based on complementary hexagonal resonator. Optik, 2019, 178, 1062-1070.	1.4	1
161	Computer based algorithm to design metamaterials. , 2010, , .		0
162	THz pulse propagation through woven-steel-mesh metamaterials. , 2010, , .		0

#	Article	IF	CITATIONS
163	Wire-cloth-mesh metamaterials for GHz and THz frequency regime. , 2011, , .		Ο
164	Multi-scale electromagnetic band gap structures and antenna applications. , 2011, , .		0
165	Terahertz propagation through free-standing woven-steel-mesh metamaterials. , 2011, , .		0
166	Diamond-shaped hole array as a fishnet metamaterial for negative refraction. , 2013, , .		0
167	Chiral metamaterials with strong and dynamically optical activity. , 2013, , .		0
168	Low-loss and multi-band metamaterials. , 2013, , .		0
169	Giant circular dichroism in chiral metamaterials. , 2013, , .		0
170	Polarization angle independent perfect metamaterial absorber. , 2014, , .		0
171	Polarization angle independent metamaterial absorber based on circle-shaped resonators with interference theory. Modern Physics Letters B, 2015, 29, 1550188.	1.0	0
172	Design of tunable and dual/multi-band metamaterial based perfect microwave absorber. International Journal of Applied Electromagnetics and Mechanics, 2015, 47, 729-735.	0.3	0
173	Near-infrared embedded metamaterial composed of circular ring resonator with wire strip topology for free-space applications. , 2016, , .		0
174	Silicon based metamaterial design with circular ring resonator topology as a near-infrared concentrator. , 2016, , .		0
175	Cylindrical shell approach for an infrared embedded metamaterial composed of circular ring resonator with wire strip topology. , 2016, , .		0
176	New generation chiral metamaterials with small and flat chirality over a certain frequency band based on circular split ring resonators for microwave filter applications. Modern Physics Letters B, 2016, 30, 1650114.	1.0	0
177	New generation chiral metamaterials based on omega resonators with small and smooth chirality over a certain frequency band. Modern Physics Letters B, 2016, 30, 1650040.	1.0	0
178	Tunable graphene integrated perfect metamaterial absorber for energy harvesting and visible light communication. , 2018, , .		0
179	Terahertz Transmission Through Patterened Vanadium Oxide Thin Films on Dielectric Substrates. , 2017, , .		0
180	Metamelike Based Sensor Design and Application for Fuel Sector. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 2017, 9, 86-91.	0.1	0