Pakatip Ruenraroengsak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanosystem drug targeting: Facing up to complex realities. Journal of Controlled Release, 2010, 141, 265-276.	9.9	243
2	Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium. ACS Nano, 2014, 8, 11778-11789.	14.6	118
3	Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology, 2012, 6, 94-108.	3.0	112
4	Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 2017, 7, 42871.	3.3	110
5	Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Particle and Fibre Toxicology, 2015, 12, 19.	6.2	103
6	Imaging Single Nanoparticle Interactions with Human Lung Cells Using Fast Ion Conductance Microscopy. Nano Letters, 2014, 14, 1202-1207.	9.1	80
7	Inhibition of Naja kaouthia venom activities by plant polyphenols. Journal of Ethnopharmacology, 2005, 97, 527-533.	4.1	74
8	Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale, 2013, 5, 9839.	5.6	56
9	An intrinsically fluorescent dendrimer as a nanoprobe of cell transport. Journal of Drug Targeting, 2006, 14, 405-412.	4.4	48
10	Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia?. Nanomedicine, 2013, 8, 725-737.	3.3	47
11	Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology, 2016, 10, 1351-1362.	3.0	42
12	Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials, 2014, 35, 4729-4738.	11.4	40
13	Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells. Nanoscale, 2019, 11, 12858-12870.	5.6	39
14	High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells. Biomaterials, 2015, 70, 57-70.	11.4	30
15	The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels. International Journal of Pharmaceutics, 2005, 298, 361-366.	5.2	26
16	Translocation of Functionalized Multi-Walled Carbon Nanotubes across Human Pulmonary Alveolar Epithelium: Dominant Role of Epithelial Type 1 Cells. ACS Nano, 2016, 10, 5070-5085.	14.6	26
17	Carboxylation of multiwalled carbon nanotubes reduces their toxicity in primary human alveolar macrophages. Environmental Science: Nano, 2016, 3, 1340-1350.	4.3	26
18	Functional consequences for primary human alveolar macrophages following treatment with long, but not short, multiwalled carbon nanotubes. International Journal of Nanomedicine, 2015, 10, 3115.	6.7	21

#	Article	IF	CITATIONS
19	Characterisation of carbon nanotubes in the context of toxicity studies. Environmental Health, 2009, 8, S3.	4.0	20
20	Cell uptake, cytoplasmic diffusion and nuclear access of a 6.5nm diameter dendrimer. International Journal of Pharmaceutics, 2007, 331, 215-219.	5.2	16
21	Biphasic interactions between a cationic dendrimer and actin. Journal of Drug Targeting, 2010, 18, 803-811.	4.4	16
22	Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant. Nanotoxicology, 2015, 9, 482-492.	3.0	12
23	Label-Free Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Sulfur-Producing Enzymes inside Microglia Cells following Exposure to Silver Nanowires. Analytical Chemistry, 2019, 91, 11098-11107.	6.5	9
24	In Vitro. Investigation of the Protective Effects of Tannic Acid Against the Activities ofNaja kaouthia. Venom. Pharmaceutical Biology, 2007, 45, 94-97.	2.9	8
25	Immortalisation of primary human alveolar epithelial lung cells using a non-viral vector to study respiratory bioreactivity in vitro. Scientific Reports, 2020, 10, 20486.	3.3	7
26	Effect of silver nanospheres and nanowires on human airway smooth muscle cells: role of sulfidation. Nanoscale Advances, 2020, 2, 5635-5647.	4.6	7