List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4476170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new nodavirus is associated with covert mortality disease of shrimp. Journal of General Virology, 2014, 95, 2700-2709.	2.9	64
2	Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine, 2012, 30, 2282-2287.	3.8	56
3	Isolation and characterization of Toxoplasma gondii strains from stray cats revealed a single genotype in Beijing, China. Veterinary Parasitology, 2012, 187, 408-413.	1.8	52

 $_{4}$ Seroepidemiology of Neospora caninum and Toxoplasma gondii in cattle and water buffaloes (Bubalus) Tj ETQq0 0 $_{1.8}^{0}$ gBT /Overlock 10 $_{49}^{10}$

5	NLRP3 Inflammasome Participates in Host Response to Neospora caninum Infection. Frontiers in Immunology, 2018, 9, 1791.	4.8	36
6	Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. Journal of Virology, 2020, 94, .	3.4	35
7	NcGRA17 is an important regulator of parasitophorous vacuole morphology and pathogenicity of Neospora caninum. Veterinary Parasitology, 2018, 264, 26-34.	1.8	34
8	Identification and characterization of a microneme protein (NcMIC6) in Neospora caninum. Parasitology Research, 2015, 114, 2893-2902.	1.6	31
9	Construction of DNA vaccines and their induced protective immunity against experimental Eimeria tenella infection. Parasitology Research, 2004, 94, 332-336.	1.6	29
10	Survey of nine abortifacient infectious agents in aborted bovine fetuses from dairy farms in Beijing, China, by PCR. Acta Veterinaria Hungarica, 2012, 60, 83-92.	0.5	27
11	The Apoptotic Role of Metacaspase in Toxoplasma gondii. Frontiers in Microbiology, 2015, 6, 1560.	3.5	27
12	ROP18 Is a Key Factor Responsible for Virulence Difference between Toxoplasma gondii and Neospora caninum. PLoS ONE, 2014, 9, e99744.	2.5	27
13	Neospora caninum ROP16 play an important role in the pathogenicity by phosphorylating host cell STAT3. Veterinary Parasitology, 2017, 243, 135-147.	1.8	26
14	Rhoptry protein 5 (ROP5) Is a Key Virulence Factor in Neospora caninum. Frontiers in Microbiology, 2017, 8, 370.	3.5	25
15	A Nuclear Factor of High Mobility Group Box Protein in Toxoplasma gondii. PLoS ONE, 2014, 9, e111993.	2.5	24
16	Activity of several kinds of drugs against Neospora caninum. Parasitology International, 2015, 64, 597-602.	1.3	22
17	Serodiagnosis of Neospora caninum infection in cattle using a recombinant tNcSRS2 protein-based ELISA. Veterinary Parasitology, 2007, 143, 358-363.	1.8	21
18	MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum. Parasitology Research, 2015, 114, 3791-3799.	1.6	19

#	Article	IF	CITATIONS
19	Complete genome sequence of an isolate of a novel genotype of yellow head virus from Fenneropenaeus chinensis indigenous in China. Archives of Virology, 2017, 162, 1149-1152.	2.1	19
20	<i>Toxoplasma gondii</i> UBLâ€UBA shuttle proteins contribute to the degradation of ubiquitinylated proteins and are important for synchronous cell division and virulence. FASEB Journal, 2020, 34, 13711-13725.	0.5	19
21	Immunoprotection of chickens against Eimeria acervulina by recombinant α-tubulin protein. Parasitology Research, 2008, 103, 1133-1140.	1.6	18
22	Multi-epitope recombinant vaccine induces immunoprotection against mixed infection of Eimeria spp Parasitology Research, 2012, 110, 2297-2306.	1.6	16
23	Comprehensive Characterization of <i>Toxoplasma</i> Acyl Coenzyme A-Binding Protein TgACBP2 and Its Critical Role in Parasite Cardiolipin Metabolism. MBio, 2018, 9, .	4.1	16
24	Synergistic roles of acyl-CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in <i>Toxoplasma</i> lipid metabolism. Cellular Microbiology, 2019, 21, e12970.	2.1	16
25	Role of an estradiol regulatory factor-hydroxysteroid dehydrogenase (HSD) in Toxoplasma gondii infection and pathogenicity. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 176-182.	2.5	15
26	Effects of Estradiol and Progesterone-Induced Intracellular Calcium Fluxes on Toxoplasma gondii Gliding, Microneme Secretion, and Egress. Frontiers in Microbiology, 2018, 9, 1266.	3.5	14
27	Sterculic Acid and Its Analogues Are Potent Inhibitors of <i>Toxoplasma gondii</i> . Korean Journal of Parasitology, 2016, 54, 139-145.	1.3	14
28	A Novel Rhoptry Protein as Candidate Vaccine against Eimeria tenella Infection. Vaccines, 2020, 8, 452.	4.4	12
29	GRA 14, a novel dense granule protein from <italic>Neospora caninum</italic> . Acta Biochimica Et Biophysica Sinica, 2013, 45, 607-609.	2.0	11
30	Anti-Recombinant Gametocyte 56 Protein IgY Protected Chickens from Homologous Coccidian Infection. Journal of Integrative Agriculture, 2012, 11, 1721-1728.	3.5	9
31	A new microneme protein of Neospora caninum , NcMIC8 is involved in host cell invasion. Experimental Parasitology, 2017, 175, 21-27.	1.2	9
32	<italic>Toxoplasma gondii</italic> rhoptry protein38 (TgROP38) affects parasite invasion, egress, and induces IL-18 secretion during early infection. Acta Biochimica Et Biophysica Sinica, 2018, 50, 766-775.	2.0	9
33	First Isolation ofNeospora caninumfrom Blood of a Naturally Infected Adult Dairy Cow in Beijing, China. Journal of Parasitology, 2014, 100, 812-816.	0.7	8
34	An in vitro larval migration assay for assessing anthelmintic activity of different drug classes against Ascaris suum. Veterinary Parasitology, 2017, 238, 43-48.	1.8	8
35	Evaluation of 4 merozoite antigens as candidate vaccines against Eimeria tenella infection. Poultry Science, 2021, 100, 100888.	3.4	8
36	Functional characterization of a unique cytochrome P450 in <i>Toxoplasma gondii</i> . Oncotarget, 2017, 8, 115079-115088.	1.8	8

#	Article	IF	CITATIONS
37	Glutaredoxin 1 Deficiency Leads to Microneme Protein-Mediated Growth Defects in Neospora caninum. Frontiers in Microbiology, 2020, 11, 536044.	3.5	7
38	Triclosan inhibits the growth of Neospora caninum in vitro and in vivo. Parasitology Research, 2019, 118, 3001-3010.	1.6	6
39	Prevalence and associated risk factors of Neospora caninum infection among cattle in mainland China: A systematic review and meta-analysis. Preventive Veterinary Medicine, 2022, 201, 105593.	1.9	6
40	Immunogenicity of a DNA vaccine expressing the Neospora caninum surface protein NcSRS2 in mice. Acta Veterinaria Hungarica, 2009, 57, 51-62.	0.5	5
41	Prevalence of Antibodies against Neospora caninum in Père David's Deer (Elaphurus davidianus) in Beijing, China. Journal of Wildlife Diseases, 2016, 52, 387-390.	0.8	5
42	Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane and adopts a novel protein fold. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 208-219.	2.3	5
43	<i>Toxoplasma gondii</i> glutathione Sâ€transferase 2 plays an important role in partial secretory protein transport. FASEB Journal, 2021, 35, e21352.	0.5	5
44	Progesterone Can Directly Inhibit the Life Activities of Toxoplasma gondii In Vitro through the Progesterone Receptor Membrane Component (PGRMC). International Journal of Molecular Sciences, 2022, 23, 3843.	4.1	5
45	Neospora caninum infection activated autophagy of caprine endometrial epithelial cells via mTOR signaling. Veterinary Parasitology, 2022, 304, 109685.	1.8	5
46	Seroepidemiology of Toxoplasma gondii in pet dogs and cats in Beijing, China. Acta Parasitologica, 2008, 53, 317.	1.1	4
47	Toxoplasma gondii Infection Induces High Mobility Group Box 1 Released from Mouse Macrophages. Frontiers in Microbiology, 2017, 8, 658.	3.5	4
48	Toxoplasma gondii metacaspase 2 is an important factor that influences bradyzoite formation in the Pru strain. Parasitology Research, 2020, 119, 2287-2298.	1.6	4
49	Function of Neospora caninum dense granule protein 7 in innate immunity in mice. Parasitology Research, 2021, 120, 197-207.	1.6	4
50	Biotinylation of the Neospora caninum parasitophorous vacuole reveals novel dense granule proteins. Parasites and Vectors, 2021, 14, 521.	2.5	4
51	Depletion of Toxoplasma adenine nucleotide translocator leads to defects in mitochondrial morphology. Parasites and Vectors, 2022, 15, .	2.5	4
52	Identification and characterization of stearoyl-CoA desaturase in <italic>Toxoplasma gondii</italic> . Acta Biochimica Et Biophysica Sinica, 2019, 51, 614-625.	2.0	3
53	Characterization of Neospora Caninum Microneme Protein 26 and Its Potential Use as a Diagnostic Marker for Neosporosis in Cattle. Frontiers in Veterinary Science, 2020, 7, 357.	2.2	3
54	Identification and Function of Apicoplast Glutaredoxins in Neospora caninum. International Journal of Molecular Sciences, 2021, 22, 11946.	4.1	3

#	Article	IF	CITATIONS
55	<i>Toxoplasma gondii</i> UBL–UBA shuttle proteins regulate several important cellular processes. FASEB Journal, 2021, 35, e21898.	0.5	3
56	Expression of the tandem enhanced yellow fluorescent marker gene in Toxoplasma gondii. Parasitology Research, 2009, 105, 287-291.	1.6	2
57	Identification and co-localization of perforin-like (TgPLP1) protein in Toxoplasma gondii bradyzoites. Experimental Parasitology, 2015, 153, 39-44.	1.2	2
58	Functional characterization of acyl-CoA binding protein in Neospora caninum. Parasites and Vectors, 2020, 13, 85.	2.5	2
59	Toxoplasma gondii UBL-UBA Shuttle Protein DSK2s Are Important for Parasite Intracellular Replication. International Journal of Molecular Sciences, 2021, 22, 7943.	4.1	2
60	Requirement of Toxoplasma gondii metacaspases for IMC1 maturation, endodyogeny and virulence in mice. Parasites and Vectors, 2021, 14, 400.	2.5	2
61	Deletion of Toxoplasma Rhoptry Protein 38 (Pruî"rop38) as a Vaccine Candidate for Toxoplasmosis in a Murine Model. Biomedicines, 2022, 10, 1336.	3.2	2
62	NcPuf1 Is a Key Virulence Factor in Neospora caninum. Pathogens, 2020, 9, 1019.	2.8	1
63	Microneme Protein 6 Is Involved in Invasion and Egress by Neospora caninum. Pathogens, 2021, 10, 201.	2.8	1
64	Neospora caninum immune mapped protein 1 (NcIMP1) is a novel vaccine candidate against neosporosis. Frontiers of Agricultural Science and Engineering, 2015, 2, 66.	1.4	1
65	Optimized expression of dual reporter genes in transient transfection of purified <i>Toxoplasma gondii</i> using different promoters. Canadian Journal of Microbiology, 2012, 58, 483-489.	1.7	Ο