Jinke Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4475929/publications.pdf Version: 2024-02-01

LINKE CHENC

#	Article	IF	CITATIONS
1	SENP2-PLCβ4 signaling regulates neurogenesis through the maintenance of calcium homeostasis. Cell Death and Differentiation, 2022, 29, 337-350.	11.2	5
2	Oncogenic role of the SOX9-DHCR24-cholesterol biosynthesis axis in <i>IGH-BCL2</i> + diffuse large B-cell lymphomas. Blood, 2022, 139, 73-86.	1.4	13
3	NR4A1 promotes LEF1 expression in the pathogenesis of papillary thyroid cancer. Cell Death Discovery, 2022, 8, 46.	4.7	4
4	<i>S1P</i> defects cause a new entity of cataract, alopecia, oral mucosal disorder, and psoriasisâ€like syndrome. EMBO Molecular Medicine, 2022, 14, e14904.	6.9	11
5	SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Reports, 2022, 39, 110660.	6.4	33
6	MUC1 triggers lineage plasticity of Her2 positive mammary tumors. Oncogene, 2022, 41, 3064-3078.	5.9	5
7	TRPV1 SUMOylation suppresses itch by inhibiting TRPV1 interaction with H1 receptors. Cell Reports, 2022, 39, 110972.	6.4	5
8	CPT2 K79 acetylation regulates platelet life span. Blood Advances, 2022, 6, 4924-4935.	5.2	2
9	SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics, 2021, 11, 3981-3995.	10.0	34
10	MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature, 2021, 592, 606-610.	27.8	53
11	SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nature Communications, 2021, 12, 1812.	12.8	61
12	Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nature Communications, 2021, 12, 4371.	12.8	55
13	WWP1 targeting MUC1 for ubiquitin-mediated lysosomal degradation to suppress carcinogenesis. Signal Transduction and Targeted Therapy, 2021, 6, 297.	17.1	7
14	Hypoxia regulates overall mRNA homeostasis by inducing Met1-linked linear ubiquitination of AGO2 in cancer cells. Nature Communications, 2021, 12, 5416.	12.8	23
15	CD177 modulates the function and homeostasis of tumor-infiltrating regulatory T cells. Nature Communications, 2021, 12, 5764.	12.8	38
16	SUMOylation of α-tubulin is a novel modification regulating microtubule dynamics. Journal of Molecular Cell Biology, 2021, 13, 91-103.	3.3	9
17	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	8.0	29
18	ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Science Advances, 2021, 7, eabf6290.	10.3	79

Jinke Cheng

#	Article	IF	CITATIONS
19	SENP1 in the retrosplenial agranular cortex regulates core autistic-like symptoms in mice. Cell Reports, 2021, 37, 109939.	6.4	18
20	The deacetylase sirtuin 6 protects against kidneyÂfibrosis by epigenetically blocking β-catenin targetÂgene expression. Kidney International, 2020, 97, 106-118.	5.2	53
21	SUMOylation enhances the activity of IDH2 under oxidative stress. Biochemical and Biophysical Research Communications, 2020, 532, 591-597.	2.1	7
22	PKCÎμ SUMOylation Is Required for Mediating the Nociceptive Signaling of Inflammatory Pain. Cell Reports, 2020, 33, 108191.	6.4	6
23	SUMOylation-Mediated Response to Mitochondrial Stress. International Journal of Molecular Sciences, 2020, 21, 5657.	4.1	25
24	Mild Oxidative Stress Reduces NRF2 SUMOylation to Promote Kras/Lkb1/Keap1 Mutant Lung Adenocarcinoma Cell Migration and Invasion. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	6
25	Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting. Cell Death and Differentiation, 2020, 27, 3146-3161.	11.2	21
26	cGAS-STING–mediated DNA sensing maintains CD8 ⁺ T cell stemness and promotes antitumor T cell therapy. Science Translational Medicine, 2020, 12, .	12.4	121
27	P53 suppresses SENP3 phosphorylation to mediate G2 checkpoint. Cell Discovery, 2020, 6, 21.	6.7	15
28	DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Science Advances, 2020, 6, eaaz0361.	10.3	42
29	SENP2 Suppresses Necdin Expression to Promote Brown Adipocyte Differentiation. Cell Reports, 2019, 28, 2004-2011.e4.	6.4	16
30	SENP1-Sirt3 Signaling Controls Mitochondrial Protein Acetylation and Metabolism. Molecular Cell, 2019, 75, 823-834.e5.	9.7	119
31	NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Letters, 2019, 466, 39-48.	7.2	37
32	SUMO-Specific Protease 1 Is Critical for Myeloid-Derived Suppressor Cell Development and Function. Cancer Research, 2019, 79, 3891-3902.	0.9	12
33	Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. Journal of Molecular Cell Biology, 2019, 11, 489-495.	3.3	18
34	Mitotic Phosphorylation of SENP3 Regulates DeSUMOylation of Chromosome-Associated Proteins and Chromosome Stability. Cancer Research, 2018, 78, 2171-2178.	0.9	22
35	SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Research, 2018, 46, 5195-5208.	14.5	210
36	TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nature Communications, 2018, 9, 1529.	12.8	52

Jinke Cheng

#	Article	IF	CITATIONS
37	DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages. Journal of Biological Chemistry, 2018, 293, 3965-3980.	3.4	32
38	Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1. Journal of Molecular Cell Biology, 2018, 10, 258-266.	3.3	37
39	SUMO suppresses and MYC amplifies transcription globally by regulating CDK9 sumoylation. Cell Research, 2018, 28, 670-685.	12.0	26
40	Hyper-SUMOylation of K+ Channels in Sudden Unexplained Death in Epilepsy: Isolation and Primary Culture of Dissociated Hippocampal Neurons from Newborn Mice for Subcellular Localization. Methods in Molecular Biology, 2018, 1684, 63-71.	0.9	13
41	PIAS1 protects against myocardial ischemia-reperfusion injury by stimulating PPARÎ ³ SUMOylation. BMC Cell Biology, 2018, 19, 24.	3.0	30
42	SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nature Communications, 2018, 9, 3157.	12.8	87
43	sNASP inhibits TLR signaling to regulate immune response in sepsis. Journal of Clinical Investigation, 2018, 128, 2459-2472.	8.2	25
44	SUMOylation of KLF4 promotes IL-4 induced macrophage M2 polarization. Cell Cycle, 2017, 16, 374-381.	2.6	34
45	SENP1 regulates IFN-γâ^'STAT1 signaling through STAT3â^'SOCS3 negative feedback loop. Journal of Molecular Cell Biology, 2017, 9, 144-153.	3.3	32
46	Structural basis of a novel heterodimeric Fc for bispecific antibody production. Oncotarget, 2017, 8, 51037-51049.	1.8	41
47	SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget, 2017, 8, 17651-17664.	1.8	37
48	SUMOylation and Potassium Channels. Advances in Protein Chemistry and Structural Biology, 2016, 103, 295-321.	2.3	18
49	SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death and Disease, 2016, 7, e2484-e2484.	6.3	34
50	SENP1 Is a Crucial Regulator for Cell Senescence through DeSUMOylation of Bmi1. Scientific Reports, 2016, 6, 34099.	3.3	4
51	SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Reports, 2016, 15, 147-157.	6.4	36
52	SENP1 promotes proliferation of clear cell renal cell carcinoma through activation of glycolysis. Oncotarget, 2016, 7, 80435-80449.	1.8	24
53	SUMOylation Attenuates Human β-Arrestin 2 Inhibition of IL-1R/TRAF6 Signaling. Journal of Biological Chemistry, 2015, 290, 1927-1935.	3.4	17
54	Functional Proteomics Study Reveals SUMOylation of TFII-I is Involved in Liver Cancer Cell Proliferation. Journal of Proteome Research, 2015, 14, 2385-2397.	3.7	21

JINKE CHENG

#	Article	IF	CITATIONS
55	Induction of SENP1 in myocardium contributes to abnormities of mitochondria and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 79, 115-122.	1.9	32
56	Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nature Communications, 2014, 5, 4980.	12.8	46
57	An Essential Role of Small Ubiquitin-like Modifier (SUMO)-specific Protease 2 in Myostatin Expression and Myogenesis. Journal of Biological Chemistry, 2014, 289, 3288-3293.	3.4	31
58	Small Ubiquitin-like Modifier (SUMO) Protein-specific Protease 1 De-SUMOylates Sharp-1 Protein and Controls Adipocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 22358-22364.	3.4	17
59	SENP1 protects against myocardial ischaemia/reperfusion injury via a HIF1α-dependent pathway. Cardiovascular Research, 2014, 104, 83-92.	3.8	62
60	Hyper-SUMOylation of the Kv7 Potassium Channel Diminishes the M-Current Leading to Seizures and Sudden Death. Neuron, 2014, 83, 1159-1171.	8.1	86
61	Sumoylation of Influenza A Virus Nucleoprotein Is Essential for Intracellular Trafficking and Virus Growth. Journal of Virology, 2014, 88, 9379-9390.	3.4	53
62	Over-expression of small ubiquitin-like modifier proteases 1 predicts chemo-sensitivity and poor survival in non-small cell lung cancer. Chinese Medical Journal, 2014, 127, 4060-5.	2.3	5
63	SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation. Cell Cycle, 2012, 11, 1118-1122.	2.6	37
64	SUMO-specific Protease 1 Regulates Mitochondrial Biogenesis through PGC-1α. Journal of Biological Chemistry, 2012, 287, 44464-44470.	3.4	35
65	SUMO-Specific Protease 1 Is Critical for Early Lymphoid Development through Regulation of STAT5 Activation. Molecular Cell, 2012, 45, 210-221.	9.7	96
66	SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nature Communications, 2012, 3, 911.	12.8	160
67	Induction of SENP1 in Endothelial Cells Contributes to Hypoxia-driven VEGF Expression and Angiogenesis. Journal of Biological Chemistry, 2010, 285, 36682-36688.	3.4	69
68	SENP1 Induces Prostatic Intraepithelial Neoplasia through Multiple Mechanisms. Journal of Biological Chemistry, 2010, 285, 25859-25866.	3.4	92
69	SUMO-Specific Protease 2 Is Essential for Suppression of Polycomb Group Protein-Mediated Gene Silencing during Embryonic Development. Molecular Cell, 2010, 38, 191-201.	9.7	188
70	SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia. Cell, 2007, 131, 584-595.	28.9	535
71	Role of Desumoylation in the Development of Prostate Cancer. Neoplasia, 2006, 8, 667-676.	5.3	191
72	Differential Regulation of c-Jun-dependent Transcription by SUMO-specific Proteases. Journal of Biological Chemistry, 2005, 280, 14492-14498.	3.4	52

#	Article	IF	CITATIONS
73	SENP1 Enhances Androgen Receptor-Dependent Transcription through Desumoylation of Histone Deacetylase 1. Molecular and Cellular Biology, 2004, 24, 6021-6028.	2.3	164
74	Disruption of Mekk2 in Mice Reveals an Unexpected Role for MEKK2 in Modulating T-Cell Receptor Signal Transduction. Molecular and Cellular Biology, 2002, 22, 5761-5768.	2.3	58