Nika Galic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4475837/publications.pdf

Version: 2024-02-01

361413 361022 1,340 47 20 35 citations h-index g-index papers 48 48 48 1499 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Potential application of population models in the European ecological risk assessment of chemicals II: Review of models and their potential to address environmental protection aims. Integrated Environmental Assessment and Management, 2010, 6, 338-360.	2.9	123
2	Potential application of ecological models in the European environmental risk assessment of chemicals I: Review of protection goals in EU directives and regulations. Integrated Environmental Assessment and Management, 2010, 6, 325-337.	2.9	120
3	When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecology Letters, 2018, 21, 568-577.	6.4	105
4	The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Science of the Total Environment, 2012, 415, 93-100.	8.0	86
5	Toxicokineticâ€toxicodynamic modeling of quantal and graded sublethal endpoints: A brief discussion of concepts. Environmental Toxicology and Chemistry, 2011, 30, 2519-2524.	4.3	77
6	Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem service delivery. Environment International, 2016, 91, 215-219.	10.0	58
7	Assessing the risks of pesticides to threatened and endangered species using population modeling: A critical review and recommendations for future work. Environmental Toxicology and Chemistry, 2016, 35, 1904-1913.	4.3	56
8	How fast is fast? Ecoâ€evolutionary dynamics and rates of change in populations and phenotypes. Ecology and Evolution, 2016, 6, 573-581.	1.9	55
9	Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species. Biological Invasions, 2011, 13, 1791-1803.	2.4	46
10	How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology, 2009, 90, 945-960.	3.2	45
11	A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals. Environmental Toxicology and Chemistry, 2017, 36, 845-859.	4.3	40
12	Adverse impacts of hypoxia on aquatic invertebrates: A meta-analysis. Science of the Total Environment, 2019, 652, 736-743.	8.0	39
13	Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants. Global Change Biology, 2017, 23, 2973-2989.	9.5	33
14	Simulating population recovery of an aquatic isopod: Effects of timing of stress and landscape structure. Environmental Pollution, 2012, 163, 91-99.	7.5	32
15	Assessment of the Vulnerability to Pesticide Exposures Across Bee Species. Environmental Toxicology and Chemistry, 2021, 40, 2640-2651.	4.3	30
16	Popâ€guide: Population modeling guidance, use, interpretation, and development for ecological risk assessment. Integrated Environmental Assessment and Management, 2021, 17, 767-784.	2.9	29
17	Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of <i>Gammarus pulex</i> populations after exposure to pesticides. Environmental Toxicology and Chemistry, 2014, 33, 1476-1488.	4.3	26
18	Persistence of Aquatic Insects across Managed Landscapes: Effects of Landscape Permeability on Re-Colonization and Population Recovery. PLoS ONE, 2013, 8, e54584.	2.5	25

#	Article	IF	CITATIONS
19	Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition, model variants, application and challenges. Science of the Total Environment, 2020, 745, 141027.	8.0	24
20	Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of endocrine disruptor effects on trout. Science of the Total Environment, 2019, 649, 949-959.	8.0	23
21	Populationâ€level effects and recovery of aquatic invertebrates after multiple applications of an insecticide. Integrated Environmental Assessment and Management, 2016, 12, 67-81.	2.9	22
22	Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling and Software, 2021, 136, 104932.	4.5	19
23	Assessment of risks to listed species from the use of atrazine in the USA: a perspective. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 223-306.	6.5	18
24	Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of insecticide impacts on a freshwater lake. Science of the Total Environment, 2019, 682, 426-436.	8.0	17
25	Was Lates Late? A Null Model for the Nile Perch Boom in Lake Victoria. PLoS ONE, 2013, 8, e76847.	2.5	17
26	Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environmental Toxicology and Chemistry, 2014, 33, 1517-1528.	4.3	16
27	Effects of temperature on the performance of a freshwater amphipod. Hydrobiologia, 2017, 785, 35-46.	2.0	15
28	Ecological models in ecotoxicology and ecological risk assessment: an introduction to the special section. Environmental Toxicology and Chemistry, 2014, 33, 1446-1448.	4.3	13
29	Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Integrated Environmental Assessment and Management, 2020, 16, 53-65.	2.9	13
30	Assessing chemical risk within an ecosystem services framework: Implementation and added value. Science of the Total Environment, 2021, 791, 148631.	8.0	13
31	Assessing pesticide risks to threatened and endangered species using population models: Findings and recommendations from a CropLife America Science Forum. Integrated Environmental Assessment and Management, 2015, 11, 348-354.	2.9	12
32	Modeling Sublethal Effects of Chemicals: Application of a Simplified Dynamic Energy Budget Model to Standard Ecotoxicity Data. Environmental Science & Echnology, 2020, 54, 7420-7429.	10.0	12
33	Comparative Analysis of Plant Demographic Traits Across Species of Different Conservation Concern: Implications for Pesticide Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38, 2043-2052.	4.3	11
34	Simulating Honey Bee Largeâ€Scale Colony Feeding Studies Using the BEEHAVE Modelâ€"Part I: Model Validation. Environmental Toxicology and Chemistry, 2020, 39, 2269-2285.	4.3	10
35	Guidance for Developing Amphibian Population Models for Ecological Risk Assessment. Integrated Environmental Assessment and Management, 2020, 16, 223-233.	2.9	9
36	Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach. Ecological Modelling, 2019, 405, 1-14.	2.5	8

#	Article	IF	CITATIONS
37	Simulating Honey Bee Largeâ€Scale Colony Feeding Studies Using the BEEHAVE Modelâ€"Part II: Analysis of Overwintering Outcomes. Environmental Toxicology and Chemistry, 2020, 39, 2286-2297.	4.3	8
38	Validation of freshwater mussel lifeâ€history strategies: A database and multivariate analysis of freshwater mussel lifeâ€history traits. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	2.0	7
39	The role of Dynamic Energy Budget theory in predictive modeling of stressor impacts on ecological systems. Physics of Life Reviews, 2017, 20, 43-45.	2.8	6
40	The Comprehensive Aquatic Systems Model (CASM): Advancing Computational Capability for Ecosystem Simulation. Environmental Toxicology and Chemistry, 2020, 39, 2298-2303.	4.3	6
41	A Hybrid Individualâ€Based and Food Web–Ecosystem Modeling Approach for Assessing Ecological Risks to the Topeka Shiner (Notropis topeka): A Case Study with Atrazine. Environmental Toxicology and Chemistry, 2019, 38, 2243-2258.	4.3	5
42	Modeling Pesticide Effects on Multiple Threatened and Endangered Cyprinid Fish Species: The Role of Life-History Traits and Ecology. Ecologies, 2022, 3, 183-205.	1.6	3
43	Modeling genomes to phenomes to populations in a changing climate: The need for collaborative networks. Ecological Modelling, 2019, 406, 80-83.	2.5	2
44	Applying a Hybrid Modeling Approach to Evaluate Potential Pesticide Effects and Mitigation Effectiveness for an Endangered Fish in Simulated Oxbow Habitats. Environmental Toxicology and Chemistry, 2021, 40, 2615-2628.	4.3	2
45	Evaluating the Efficacy of Approaches to Control Invasive Populations: A Conceptual Model Development for the Signal Crayfish. Ecologies, 2022, 3, 78-95.	1.6	2
46	The Second Young Environmental Scientist (YES) meeting 2011 at RWTH Aachen University environmental challenges in a changing world. Environmental Sciences Europe, 2011, 23, .	11.0	1
47	Using lifeâ€history trait variation to inform ecological risk assessments for threatened and endangered plant species. Integrated Environmental Assessment and Management, 2023, 19, 213-223.	2.9	1