Nika Galic

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4475837/publications.pdf
Version: 2024-02-01

Potential application of population models in the European ecological risk assessment of chemicals II:
1 Review of models and their potential to address environmental protection aims. Integrated 2.9
Environmental Assessment and Management, 2010, 6, 338-360.
Potential application of ecological models in the European environmental risk assessment of
2 chemicals l: Review of protection goals in EU directives and regulations. Integrated Environmental
Assessment and Management, 2010, 6, 325-337.
When things don't add up: quantifying impacts of multiple stressors from individual metabolism to
ecosystem processing. Ecology Letters, 2018, 21, 568-577.
$6 \quad$ Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem
service delivery. Environment International, 2016, 91, 215-219.
7 critical review and recommendations for future work. Environmental Toxicology and Chemistry, $4.3 \quad 56$ 2016, 35, 1904-1913.

8 How fast is fast? Ecoâ€evolutionary dynamics and rates of change in populations and phenotypes.
Ecology and Evolution, 2016, 6, 573-581.
1.955
$9 \quad$ Competitive interactions between co-occurring invaders: identifying asymmetries between two
invasive crayfish species. Biological Invasions, 2011, 13, 1791-1803.

10 How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology, 2009, 90, 945-960.
3.2

45
11 A framework for predicting impacts on ecosystem services from (sub)organismal responses to
chemicals. Environmental Toxicology and Chemistry, 2017, 36, 845-859.
chemicals. Environmental Toxicology and Chemistry, 2017, 36, 845-859.

Adverse impacts of hypoxia on aquatic invertebrates: A meta-analysis. Science of the Total
12 Environment, 2019, 652, 736-743.
8.0

39

Impaired ecosystem process despite little effects on populations: modeling combined effects of
13 warming and toxicants. Global Change Biology, 2017, 23, 2973-2989.
9.5

33

Simulating population recovery of an aquatic isopod: Effects of timing of stress and landscape structure. Environmental Pollution, 2012, 163, 91-99.
7.5

32
Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of
17 <i>Cammarus pulex</i>populations after exposure to pesticides. Environmental Toxicology and
4.3
26
Chemistry, 2014, 33, 1476-1488.

Persistence of Aquatic Insects across Managed Landscapes: Effects of Landscape Permeability on
Re-Colonization and Population Recovery. PLoS ONE, 2013, 8, e54584.
19
20

> Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition,
> model variants, application and challenges. Science of the Total Environment, 2020, 745, 141027.
8.0

24

Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of
8.0 endocrine disruptor effects on trout. Science of the Total Environment, 2019, 649, 949-959.

23
21 Populationâ€level effects and recovery of aquatic invertebrates after multiple applications of an
insecticide. Integrated Environmental Assessment and Management, 2016, 12, 67-81.
2.9

Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling and Software, 2021, 136, 104932.
4.5

19
23 Assessment of risks to listed species from the use of atrazine in the USA: a perspective. Journal of
23 Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 223-306.
$6.5 \quad 18$

Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of
insecticide impacts on a freshwater lake. Science of the Total Environment, 2019, 682, 426-436.
8.0

17

25 Was Lates Late? A Null Model for the Nile Perch Boom in Lake Victoria. PLoS ONE, 2013, 8, e76847.
2.5

17

26 Comparing population recovery after insecticide exposure for four aquatic invertebrate species using
models of different complexity. Environmental Toxicology and Chemistry, 2014, 33, 1517-1528.
4.3

16

27 Effects of temperature on the performance of a freshwater amphipod. Hydrobiologia, 2017, 785, 35-46.
2.0

15

28 Ecological models in ecotoxicology and ecological risk assessment: an introduction to the special section. Environmental Toxicology and Chemistry, 2014, 33, 1446-1448.
4.3
29 Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Integrated
Environmental Assessment and Management, 2020, 16, 53-65.

Assessing chemical risk within an ecosystem services framework: Implementation and added value.
$30 \quad \begin{aligned} & \text { Assessing chemical risk within an ecosystem services fr } \\ & \text { Science of the Total Environment, 2021, 791, } 148631 .\end{aligned}$
8.0

13
.
Assessing pesticide risks to threatened and endangered species using population models: Findings and
31 recommendations from a CropLife America Science Forum. Integrated Environmental Assessment and
$2.9 \quad 12$
Management, 2015, 11, 348-354.
32 Modeling Sublethal Effects of Chemicals: Application of a Simplified Dynamic Energy Budget Model to Standard Ecotoxicity Data. Environmental Science \& Technology, 2020, 54, 7420-7429.
10.0

12

Comparative Analysis of Plant Demographic Traits Across Species of Different Conservation Concern:
33 Implications for Pesticide Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38,
4.3

2043-2052.
Simulating Honey Bee Largeâ€£cale Colony Feeding Studies Using the BEEHAVE Modelâ€"Part I: Model
Validation. Environmental Toxicology and Chemistry, 2020, 39, 2269-2285.

Environmental Assessment and Management, 2020, 16, 223-233.

Validation of freshwater mussel lifeâ€history strategies: A database and multivariate analysis of freshwater mussel lifeâ€history traits. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .
The role of Dynamic Energy Budget theory in predictive modeling of stressor impacts on ecological
systems. Physics of Life Reviews, 2017, 20, 43-45.

40 The Comprehensive Aquatic Systems Model (CASM): Advancing Computational Capability for Ecosystem

41	A Hybrid Individualâ€Based and Food Webâ€"Ecosystem Modeling Approach for Assessing Ecological Risks to the Topeka Shiner (Notropis topeka): A Case Study with Atrazine. Environmental Toxicology and Chemistry, 2019, 38, 2243-2258.	4.3	5
42	Modeling Pesticide Effects on Multiple Threatened and Endangered Cyprinid Fish Species: The Role of Life-History Traits and Ecology. Ecologies, 2022, 3, 183-205.	1.6	3
43	Modeling genomes to phenomes to populations in a changing climate: The need for collaborative networks. Ecological Modelling, 2019, 406, 80-83.	2.5	2

Applying a Hybrid Modeling Approach to Evaluate Potential Pesticide Effects and Mitigation
44 Effectiveness for an Endangered Fish in Simulated Oxbow Habitats. Environmental Toxicology and Chemistry, 2021, 40, 2615-2628.

Evaluating the Efficacy of Approaches to Control Invasive Populations: A Conceptual Model
Development for the Signal Crayfish. Ecologies, 2022, 3, 78-95.

