Qineng Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447565/publications.pdf Version: 2024-02-01

OINENC XIA

#	Article	IF	CITATIONS
1	NbO _{<i>x</i>} -Based Catalysts for the Activation of C–O and C–C Bonds in the Valorization of Waste Carbon Resources. Accounts of Chemical Research, 2022, 55, 1301-1312.	15.6	30
2	BrÃ,nsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions. Catalysis Science and Technology, 2022, 12, 3426-3430.	4.1	5
3	Catalytic hydrotreatment of humins into cyclic hydrocarbons over solid acid supported metal catalysts in cyclohexane. Journal of Energy Chemistry, 2021, 53, 329-339.	12.9	10
4	Tailoring of Surface Acidic Sites in Co–MoS ₂ Catalysts for Hydrodeoxygenation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 5668-5674.	4.6	14
5	The Promotional Effect of Sulfates on TiO ₂ Supported Ptâ€WO _x Catalyst for Hydrogenolysis of Glycerol. ChemCatChem, 2021, 13, 3953-3959.	3.7	13
6	Honeycomb-like g-C3N4/CeO2-x nanosheets obtained via one step hydrothermal-roasting for efficient and stable Cr(VI) photo-reduction. Chinese Chemical Letters, 2020, 31, 2747-2751.	9.0	19
7	Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. Journal of CO2 Utilization, 2020, 39, 101176.	6.8	47
8	Facile synthesis of silica nanosheets with hierarchical pore structure and their amine-functionalized composite for enhanced CO2 capture. Chemical Engineering Science, 2020, 217, 115528.	3.8	47
9	Synergetic combination of a mesoporous polymeric acid and a base enables highly efficient heterogeneous catalytic one-pot conversion of crude <i>Jatropha</i> oil into biodiesel. Green Chemistry, 2020, 22, 1698-1709.	9.0	25
10	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	11.7	337
11	Facile large-scale synthesis of macroscopic 3D porous graphene-like carbon nanosheets architecture for efficient CO2 adsorption. Carbon, 2019, 145, 751-756.	10.3	55
12	Oxygen vacancy-rich nitrogen-doped Co3O4 nanosheets as an efficient water-resistant catalyst for low temperature CO oxidation. Journal of Colloid and Interface Science, 2019, 553, 427-435.	9.4	46
13	Facile Synthesis of Ag/ZnO Hollow Microspheres with Enhanced Photocatalytic Performance under Simulated Sunlight Irradiation. Nano, 2019, 14, 1950036.	1.0	4
14	A facile strategy to synthesize Pd/TiO2 nanotube arrays with high visible light photocatalytic performance. Research on Chemical Intermediates, 2019, 45, 2167-2177.	2.7	7
15	Catalytic conversion of lignocellulosic biomass into hydrocarbons: A mini review. Catalysis Today, 2019, 319, 2-13.	4.4	142
16	Acid-Free Conversion of Cellulose to 5-(Hydroxymethyl)furfural Catalyzed by Hot Seawater. Industrial & Engineering Chemistry Research, 2018, 57, 3545-3553.	3.7	61
17	One-Pot Catalytic Transformation of Lignocellulosic Biomass into Alkylcyclohexanes and Polyols. ACS Sustainable Chemistry and Engineering, 2018, 6, 4390-4399.	6.7	62
18	An efficient NixZryO catalyst for hydrogenation of bio-derived methyl levulinate to γ-valerolactone in water under low hydrogen pressure. Applied Catalysis B: Environmental, 2018, 227, 488-498.	20.2	40

QINENG XIA

#	Article	IF	CITATIONS
19	Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a β-O-4 lignin model compound. Catalysis Science and Technology, 2018, 8, 735-745.	4.1	65
20	Robinson Annulation-Directed Synthesis of Jet-Fuel-Ranged Alkylcyclohexanes from Biomass-Derived Chemicals. ACS Catalysis, 2018, 8, 3280-3285.	11.2	58
21	Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chemical Engineering Journal, 2018, 332, 528-536.	12.7	93
22	Comparison of two multifunctional catalysts [M/Nb ₂ O ₅ (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	4.1	26
23	Fischer-Tropsch Synthesis Steps into the Solar Era: Lower Olefins from Syngas. CheM, 2018, 4, 2741-2743.	11.7	10
24	Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Applied Catalysis B: Environmental, 2018, 239, 196-203.	20.2	125
25	Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Science China Chemistry, 2017, 60, 870-886.	8.2	33
26	The Critical Role of Water in the Ring Opening of Furfural Alcohol to 1,2-Pentanediol. ACS Catalysis, 2017, 7, 333-337.	11.2	81
27	Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnO _x –CeO ₂ composite catalysts. Green Chemistry, 2017, 19, 996-1004.	9.0	154
28	Production of Lowâ€Freezingâ€Point Highly Branched Alkanes through Michael Addition. ChemSusChem, 2017, 10, 4817-4823.	6.8	34
29	Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8, 16104.	12.8	346
30	Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction. Applied Catalysis A: General, 2017, 547, 30-36.	4.3	67
31	Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability. Catalysis Communications, 2017, 101, 129-133.	3.3	33
32	Synthesis of Renewable Lubricant Alkanes from Biomassâ€Derived Platform Chemicals. ChemSusChem, 2017, 10, 4102-4108.	6.8	36
33	Comprehensive Understanding of the Role of BrÃ,nsted and Lewis Acid Sites in Glucose Conversion into 5â€Hydromethylfurfural. ChemCatChem, 2017, 9, 2739-2746.	3.7	86
34	Selective Oneâ€Pot Production of Highâ€Grade Dieselâ€Range Alkanes from Furfural and 2â€Methylfuran over Pd/NbOPO ₄ . ChemSusChem, 2017, 10, 747-753.	6.8	56
35	Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 2017, 187, 159-166.	6.4	119
36	Hydrazineâ€Assisted Liquid Exfoliation of MoS ₂ for Catalytic Hydrodeoxygenation of 4â€Methylphenol. Chemistry - A European Journal, 2016, 22, 2910-2914.	3.3	52

QINENG XIA

#	Article	IF	CITATIONS
37	Conversion of raw lignocellulosic biomass into branched longâ€chain alkanes through three tandem steps. ChemSusChem, 2016, 9, 1712-1718.	6.8	43
38	Hydrodeoxygenation of butyric acid at multi-functional Nb2O5 catalyst: A density functional theory study. International Journal of Hydrogen Energy, 2016, 41, 18502-18508.	7.1	15
39	High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catalysis Science and Technology, 2016, 6, 7586-7596.	4.1	56
40	Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nature Communications, 2016, 7, 11162.	12.8	359
41	High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni–Co bimetallic catalyst. Journal of Energy Chemistry, 2016, 25, 1015-1020.	12.9	57
42	Cooperative catalysis for the direct hydrodeoxygenation of vegetable oils into diesel-range alkanes over Pd/NbOPO ₄ . Chemical Communications, 2016, 52, 5160-5163.	4.1	43
43	Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst. Applied Catalysis B: Environmental, 2016, 181, 699-706.	20.2	61
44	Energy-efficient production of 1-octanol from biomass-derived furfural-acetone in water. Green Chemistry, 2015, 17, 4411-4417.	9.0	33
45	Pd/Nb ₂ O ₅ /SiO ₂ Catalyst for the Direct Hydrodeoxygenation of Biomassâ€Related Compounds to Liquid Alkanes under Mild Conditions. ChemSusChem, 2015, 8, 1761-1767.	6.8	103
46	Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process. Applied Catalysis A: General, 2014, 469, 108-115.	4.3	57
47	Pd/NbOPO ₄ Multifunctional Catalyst for the Direct Production of Liquid Alkanes from Aldol Adducts of Furans. Angewandte Chemie - International Edition, 2014, 53, 9755-9760.	13.8	241
48	Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst. Applied Catalysis A: General, 2013, 459, 52-58.	4.3	78
49	Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chemistry, 2012, 14, 2506.	9.0	163
50	Effective Production of Octane from Biomass Derivatives under Mild Conditions. ChemSusChem, 2011, 4, 1758-1761.	6.8	72