
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4475314/publications.pdf Version: 2024-02-01



YONG YANG

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thermal shock behavior of nanostructured and conventional Al2O3/13Âwt%TiO2 coatings fabricated by plasma spraying. Surface and Coatings Technology, 2007, 201, 7746-7754.                                                                            | 4.8 | 90        |
| 2  | Microstructure, spallation and corrosion of plasma sprayed Al2O3–13%TiO2 coatings. Corrosion<br>Science, 2009, 51, 2924-2931.                                                                                                                        | 6.6 | 87        |
| 3  | Laser surface remelting of plasma sprayed nanostructured Al2O3–13wt%TiO2 coatings on titanium<br>alloy. Applied Surface Science, 2009, 255, 8603-8610.                                                                                               | 6.1 | 73        |
| 4  | Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3–13%TiO2 coatings. Materials Chemistry and Physics, 2009, 118, 37-45.                                                                                       | 4.0 | 56        |
| 5  | In situ nanostructured ceramic matrix composite coating prepared by reactive plasma spraying<br>micro-sized Al–Fe2O3 composite powders. Journal of Alloys and Compounds, 2011, 509, L90-L94.                                                         | 5.5 | 54        |
| 6  | Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater. Materials & Design, 2013, 52, 630-637.                                                                                                     | 5.1 | 50        |
| 7  | In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders. Scripta Materialia, 2009, 60, 578-581.                                                                                    | 5.2 | 49        |
| 8  | Influence of composite powders' microstructure on the microstructure and properties of Al2O3–TiO2 coatings fabricated by plasma spraying. Materials & Design, 2015, 65, 814-822.                                                                     | 5.1 | 47        |
| 9  | Toughening and strengthening mechanism of plasma sprayed nanostructured Al2O3–13wt.%TiO2 coatings. Surface and Coatings Technology, 2009, 204, 642-649.                                                                                              | 4.8 | 44        |
| 10 | The effects of ceria on the mechanical properties and thermal shock resistance of thermal sprayed NiAl intermetallic coatings. Intermetallics, 2008, 16, 682-688.                                                                                    | 3.9 | 43        |
| 11 | Microstructure and properties of Al 2 O 3 -ZrO 2 composite coatings prepared by air plasma spraying.<br>Applied Surface Science, 2018, 431, 93-100.                                                                                                  | 6.1 | 43        |
| 12 | The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings. Corrosion Science, 2013, 75, 220-227.                                                                                       | 6.6 | 42        |
| 13 | Preparation of nanostructured alumina–titania composite powders by spray drying, heat treatment and plasma treatment. Powder Technology, 2012, 219, 257-263.                                                                                         | 4.2 | 40        |
| 14 | Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from<br>nanostructured composite powders. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2009, 508, 161-166. | 5.6 | 39        |
| 15 | Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3-13%TiO2 coatings. Tribology International, 2010, 43, 876-881.                                                                                       | 5.9 | 37        |
| 16 | In situ alumina/aluminum titanate bulk ceramic composites prepared by SPS from different structured composite powders. Journal of Alloys and Compounds, 2009, 481, 858-862.                                                                          | 5.5 | 32        |
| 17 | Preparing of nanostructured Al2O3–TiO2–ZrO2 composite powders and plasma spraying nanostructured composite coating. Vacuum, 2013, 96, 39-45.                                                                                                         | 3.5 | 32        |
| 18 | Microstructure and properties of in-situ TiB 2 matrix composite coatings prepared by plasma spraying.<br>Applied Surface Science, 2018, 431, 48-54.                                                                                                  | 6.1 | 32        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Microstructures, hardness and erosion behavior of thermal sprayed and heat treated NiAl coatings with different ceria. Wear, 2007, 263, 371-378.                                                                                                  | 3.1  | 31        |
| 20 | Alumina–titania ceramics prepared by microwave sintering and conventional pressure-less sintering.<br>Journal of Alloys and Compounds, 2012, 525, 63-67.                                                                                          | 5.5  | 29        |
| 21 | Fretting wear behavior of conventional and nanostructured Al2O3–13wt%TiO2 coatings fabricated by plasma spray. Wear, 2008, 265, 1700-1707.                                                                                                        | 3.1  | 27        |
| 22 | First-principles study of NiAl microalloyed with Sc, Y, La and Nd. Computational Materials Science, 2010, 50, 545-549.                                                                                                                            | 3.0  | 26        |
| 23 | Investigation of stress field and failure mode of plasma sprayed Al2O3–13%TiO2 coatings under thermal shock. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 103-110.              | 5.6  | 23        |
| 24 | Preparation and sintering behaviour of nanostructured alumina/titania composite powders modified<br>with nano-dopants. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2008, 490, 457-464. | 5.6  | 21        |
| 25 | Effect of Microstructure of Composite Powders on Microstructure and Properties of Microwave<br>Sintered Alumina Matrix Ceramics. Journal of Materials Science and Technology, 2013, 29, 429-433.                                                  | 10.7 | 21        |
| 26 | Porous nanostructured ZrO2 coatings prepared by plasma spraying. Surface and Coatings Technology, 2019, 363, 112-119.                                                                                                                             | 4.8  | 19        |
| 27 | Sliding wear behaviors of in situ alumina/aluminum titanate ceramic composites. Wear, 2009, 266, 1051-1057.                                                                                                                                       | 3.1  | 18        |
| 28 | The effect of metallic bonding layer on the corrosion behavior ofÂplasma sprayed Al2O3 ceramic coatings in simulated seawater. Vacuum, 2014, 101, 6-9.                                                                                            | 3.5  | 18        |
| 29 | Sliding wear behavior of in-situ FeAl2O4 matrix nanocomposite coating fabricated by plasma spraying.<br>Tribology International, 2015, 81, 97-104.                                                                                                | 5.9  | 18        |
| 30 | Microstructure and tribological behavior of laser cladding TiAlSi composite coatings reinforced by<br>alumina–titania ceramics on Ti–6Al–4V alloys. Materials Chemistry and Physics, 2020, 240, 122271.                                           | 4.0  | 18        |
| 31 | Research Progress of Failure Mechanism of Thermal Barrier Coatings at High Temperature via Finite<br>Element Method. Coatings, 2020, 10, 732.                                                                                                     | 2.6  | 18        |
| 32 | In-situ TiC-Ti5Si3-SiC composite coatings prepared by plasma spraying. Surface and Coatings<br>Technology, 2020, 404, 126484.                                                                                                                     | 4.8  | 18        |
| 33 | Microstructure and properties of Al2O3-Y2O3 ceramic composite coatings fabricated by plasma spraying. Surface and Coatings Technology, 2018, 350, 550-559.                                                                                        | 4.8  | 17        |
| 34 | Effect of annealing in Ar on the microstructure and properties of thick nano-grained TiN ceramic coatings. Ceramics International, 2017, 43, 9303-9309.                                                                                           | 4.8  | 16        |
| 35 | Effects of treatment process and nano-additives on the microstructure and properties of Al2O3-TiO2 nanocomposite powders used for plasma spraying. Powder Technology, 2018, 338, 304-312.                                                         | 4.2  | 16        |
| 36 | In-situ synthesis, microstructure, and properties of NbB2-NbC-Al2O3 composite coatings by plasma spraying. Journal of Advanced Ceramics, 2022, 11, 1263-1278.                                                                                     | 17.4 | 16        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microstructure and properties of Al2O3–ZrO2–TiO2 composite coatings prepared by plasma spraying.<br>Rare Metals, 2021, 40, 1825-1834.                                                                            | 7.1 | 15        |
| 38 | Comparison of plasma sprayed NbB2-NbC coatings obtained by ex-situ and in-situ approaches. Journal of the European Ceramic Society, 2021, 41, 5088-5099.                                                         | 5.7 | 15        |
| 39 | Effect of metal oxide additives on the microstructure and properties of the FeAl2O4 matrix composite coatings prepared by plasma spraying. Surface and Coatings Technology, 2013, 235, 417-423.                  | 4.8 | 14        |
| 40 | Microstructure and Properties of Al2O3–ZrO2–Y2O3 Composite Coatings Prepared by Plasma Spraying.<br>Journal of Thermal Spray Technology, 2020, 29, 967-978.                                                      | 3.1 | 14        |
| 41 | Microstructure and properties of in-situ composite coatings prepared by plasma spraying MoO3–Al composite powders. Ceramics International, 2021, 47, 1109-1120.                                                  | 4.8 | 14        |
| 42 | Phase transitions of plasma sprayed Fe–Al intermetallic coating during corrosion in molten zinc at<br>640°C. Intermetallics, 2012, 22, 160-165.                                                                  | 3.9 | 13        |
| 43 | Nanocomposite powder with three-dimensional network structure for preparing alumina–titania<br>nanocomposite coating with advanced performance. Journal of Alloys and Compounds, 2015, 622,<br>929-934.          | 5.5 | 13        |
| 44 | In situ (Al,Cr) 2 O 3 -Cr composite coating fabricated by reactive plasma spraying. Ceramics<br>International, 2017, 43, 6340-6344.                                                                              | 4.8 | 13        |
| 45 | Microstructure Characterization of the FeAl2O4-Based Nanostructured Composite Coating<br>Synthesized by Plasma Spraying Fe2O3/Al Powders. Journal of Thermal Spray Technology, 2011, 20,<br>1269-1277.           | 3.1 | 12        |
| 46 | Influence of oxides addition on the reaction of Fe2O3–Al composite powders in plasma flame. Journal of Alloys and Compounds, 2013, 579, 1-6.                                                                     | 5.5 | 12        |
| 47 | Microstructure and properties of in-situ ceramic matrix eutectic nanocomposite coating prepared by plasma spraying Al-Cr2O3-Al2O3 powder. Journal of Alloys and Compounds, 2018, 748, 230-235.                   | 5.5 | 12        |
| 48 | Effect of CeO2 on the Microstructure and Properties of Plasma-Sprayed Al2O3-ZrO2 Ceramic Coatings.<br>Journal of Materials Engineering and Performance, 2020, 29, 6390-6401.                                     | 2.5 | 12        |
| 49 | Effects of SiC on microstructure and properties of plasma sprayed ZrB2–ZrC composite coating.<br>Ceramics International, 2021, 47, 12753-12761.                                                                  | 4.8 | 12        |
| 50 | Microstructure and properties of CrB2-Cr3C2 composite coatings prepared by plasma spraying.<br>Surface and Coatings Technology, 2021, 425, 127693.                                                               | 4.8 | 12        |
| 51 | Microstructure and properties of composite coatings prepared by plasma spraying ZrO2-B2O3-Al composite powders. Journal of Alloys and Compounds, 2018, 740, 124-131.                                             | 5.5 | 11        |
| 52 | Reaction products and their solidification process of the plasma sprayed Fe2O3–Al composite powders. Materials Chemistry and Physics, 2012, 133, 190-196.                                                        | 4.0 | 10        |
| 53 | Phase evolution of plasma sprayed Al2O3â^'13%TiO2 coatings derived from nanocrystalline powders.<br>Transactions of Nonferrous Metals Society of China, 2013, 23, 2951-2956.                                     | 4.2 | 10        |
| 54 | Structure and properties of nanostructured ceramic matrix composite coatings prepared in-situ by<br>reactive plasma spraying micro-sized Al–Fe2O3–Cr2O3 powders. Ceramics International, 2014, 40,<br>6481-6486. | 4.8 | 9         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | TiC-TiSi2-Al2O3 composite coatings prepared by spray drying, heat treatment and plasma spraying.<br>Journal of Alloys and Compounds, 2021, 857, 158221.                                                                                | 5.5 | 9         |
| 56 | Fabrication of plasma-sprayed TiC-Ti5Si3-Ti3SiC2 composite coatings from the annealed Ti/SiC powders.<br>Surface and Coatings Technology, 2021, 417, 127227.                                                                           | 4.8 | 9         |
| 57 | Effect of nanoâ€Al <sub>2</sub> O <sub>3</sub> on the microstructure and properties of<br>NbB <sub>2</sub> â€NbC composite coatings prepared by plasma spraying. Journal of the American<br>Ceramic Society, 2022, 105, 712-727.       | 3.8 | 9         |
| 58 | Effect of heat treatment temperature on the microstructure and wear corrosion properties of NiCrBSi–TiN composite coatings. Ceramics International, 2022, 48, 6933-6941.                                                               | 4.8 | 9         |
| 59 | Nanostructured Al2O3–TiO2 coatings for high-temperature protection of titanium alloy during ablation. Materials Characterization, 2010, 61, 796-801.                                                                                   | 4.4 | 8         |
| 60 | Microstructure and properties of in situ nanostructured ceramic matrix composite coating prepared by plasma spraying. Journal of Materials Science, 2011, 46, 7369-7376.                                                               | 3.7 | 8         |
| 61 | Microstructure and properties of Al2O3-ZrO2-Y2O3 coatings during high temperature and thermal shock resistance. Applied Physics A: Materials Science and Processing, 2020, 126, 1.                                                     | 2.3 | 8         |
| 62 | Microstructure and properties evolution of plasma sprayed Al2O3-Y2O3 composite coatings during high temperature and thermal shock treatment. Journal of Rare Earths, 2021, 39, 718-727.                                                | 4.8 | 8         |
| 63 | Microstructure and properties of Cr7C3-CrSi2 composite coatings prepared by plasma spraying.<br>Surface and Coatings Technology, 2021, 412, 127011.                                                                                    | 4.8 | 8         |
| 64 | Preparation and Characterization of Rare Earth Modified Nanocrystalline<br>Al <sub>2</sub> O <sub>3</sub> /13 wt%TiO <sub>2</sub> Feedstock for Plasma Spraying. Journal of<br>Nanoscience and Nanotechnology, 2009, 9, 1445-1448.     | 0.9 | 7         |
| 65 | In situ composite coatings prepared by complex reactive plasma spraying of Fe 2 O 3 -Al-Cr 2 O 3 composite powders. Surface and Coatings Technology, 2017, 328, 94-101.                                                                | 4.8 | 7         |
| 66 | Microstructure and properties of in-situ ZrB2-ZrC composite coatings by plasma spraying. Surface and Coatings Technology, 2021, 409, 126846.                                                                                           | 4.8 | 6         |
| 67 | Microstructure characterization of in-situ ZrC composite coating with graceful toughness and improved tribological properties prepared by plasma spraying. Materials Characterization, 2021, 179, 111382.                              | 4.4 | 6         |
| 68 | Electrochemical corrosion behavior of plasma sprayed<br>Al <sub>2</sub> O <sub>3</sub> â€13%TiO <sub>2</sub> coatings in aqueous hydrochloric acid solution.<br>Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 611-617. | 1.5 | 5         |
| 69 | Formation of nanocrystalline FeAl <sub>2</sub> O <sub>4</sub> matrix coating by plasma spraying.<br>Surface Engineering, 2012, 28, 333-337.                                                                                            | 2.2 | 5         |
| 70 | Microstructure and properties of niobium carbide composite coatings prepared by plasma spraying.<br>Ceramics International, 2021, 47, 33338-33352.                                                                                     | 4.8 | 5         |
| 71 | Fundamental understanding on the microstructure and corrosion resistance of Cr-(Cr, Al)2O3 composite coatings in-situ synthetized by reactive plasma spraying. Surface and Coatings Technology, 2021, 423, 127608.                     | 4.8 | 5         |
| 72 | Effects of Plasma-spraying Powers on Microstructure and Microhardness of In-Situ Nanostructured<br>FeAl2O4 Composite Coatings. Journal of Thermal Spray Technology, 2013, 22, 1002-1006.                                               | 3.1 | 4         |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structure and properties of nanostructured Fe(AlCr)2O4–Cr–(AlCr)2O3–Fe composite coating prepared by plasma spraying. Ceramics International, 2015, 41, 9801-9805.                                                                                     | 4.8 | 4         |
| 74 | Electrochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3 Coatings.<br>Journal of Thermal Spray Technology, 2015, 24, 878-884.                                                                                              | 3.1 | 4         |
| 75 | Effect of post-spray annealing on the microstructure and corrosion resistance of nano-(Ti,V)N coatings. Surface and Coatings Technology, 2022, 435, 128268.                                                                                            | 4.8 | 4         |
| 76 | Friction and wear characteristics of in-situ Cr+(Cr,Al)2O3 composite coating fabricated by plasma spraying. Materials Chemistry and Physics, 2022, 287, 126199.                                                                                        | 4.0 | 4         |
| 77 | Microstructure and corrosion performance of Al <sub>0.5</sub> FeCoNiCrMn coating prepared by plasma spraying mechanically alloyed powders. Surface Engineering, 2022, 38, 383-392.                                                                     | 2.2 | 4         |
| 78 | TEM exploration of in-situ nanostructured composite coating fabricated by plasma spraying 8YSZ-Al-SiC composite powder. Ceramics International, 2022, 48, 25402-25412.                                                                                 | 4.8 | 3         |
| 79 | Ultrafine grained bulk ceramic composites consolidated from nanostructured composite powders by pressure less sintering. Powder Metallurgy, 2010, 53, 336-339.                                                                                         | 1.7 | 1         |
| 80 | Bimodal Distribution of Microstructure and Mechanical Properties of Plasma Sprayed<br>Nanostructured Al <sub>2</sub> O <sub>3</sub> -13wt%<br>TiO <sub>B</sub> 2 Coatings. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26,<br>1003-1008. | 1.3 | 1         |
| 81 | Study of Reactive Plasma Sprayed TiN Electrocatalytic Carrier Coatings. Applied Mechanics and Materials, 2011, 130-134, 950-954.                                                                                                                       | 0.2 | Ο         |
| 82 | Toughening mechanism of in-situ synthesized ZrB2 based composite coating by plasma spraying.<br>Journal of Materials Science, 2022, 57, 4145-4152.                                                                                                     | 3.7 | 0         |