
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4474779/publications.pdf Version: 2024-02-01

KEITH R CIDO

#	Article	IF	CITATIONS
1	Life on the Edge: The Ecology of Great Plains Prairie Streams. BioScience, 2004, 54, 205.	4.9	301
2	Invasion of North American drainages by alien fish species. Freshwater Biology, 1999, 42, 387-399.	2.4	186
3	Are largeâ€scale flow experiments informing the science and management of freshwater ecosystems?. Frontiers in Ecology and the Environment, 2014, 12, 176-185.	4.0	180
4	Fragmentation alters stream fish community structure in dendritic ecological networks. Ecological Applications, 2012, 22, 2176-2187.	3.8	167
5	Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. Journal of the North American Benthological Society, 2010, 29, 988-997.	3.1	157
6	Ecosystem Processes Performed by Unionid Mussels in Stream Mesocosms: Species Roles and Effects of Abundance. Hydrobiologia, 2004, 527, 35-47.	2.0	150
7	Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 2015, 85, 73-92.	5.4	148
8	Large-scale Flow Experiments for Managing River Systems. BioScience, 2011, 61, 948-959.	4.9	142
9	Stream Fragmentation Thresholds for a Reproductive Guild of Great Plains Fishes. Fisheries, 2011, 36, 371-383.	0.8	133
10	Responses of Native and Nonnative Fishes to Natural Flow Regime Mimicry in the San Juan River. Transactions of the American Fisheries Society, 2004, 133, 922-931.	1.4	130
11	Retrospective analysis of fish community change during a half-century of landuse and streamflow changes. Journal of the North American Benthological Society, 2010, 29, 970-987.	3.1	119
12	NATURAL FLOW REGIMES, NONNATIVE FISHES, AND NATIVE FISH PERSISTENCE IN ARID‣AND RIVER SYSTEMS. Ecological Applications, 2008, 18, 1236-1252.	3.8	104
13	Fragmentation and drying ratchet down Great Plains stream fish diversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 639-655.	2.0	99
14	Scaling biodiversity responses to hydrological regimes. Biological Reviews, 2018, 93, 971-995.	10.4	93
15	Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7373-7378.	7.1	89
16	Effects of floods on fish assemblages in an intermittent prairie stream. Freshwater Biology, 2006, 51, 2072-2086.	2.4	88
17	The Stream Biome Gradient Concept: factors controlling lotic systems across broad biogeographic scales. Freshwater Science, 2015, 34, 1-19.	1.8	81
18	Patterns of fish invasions in the Great Plains of North America. Biological Conservation, 2004, 118, 121-131.	4.1	75

#	Article	IF	CITATIONS
19	Multidecadal responses of native and introduced fishes to natural and altered flow regimes in the American Southwest. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 554-564.	1.4	67
20	Spatial effects of reservoirs on fish assemblages in Great Plains streams in Kansas, USA. River Research and Applications, 2006, 22, 55-68.	1.7	63
21	LONG-TERM CHANGES IN A RESERVOIR FISH ASSEMBLAGE: STABILITY IN AN UNPREDICTABLE ENVIRONMENT. , 2000, 10, 1517-1529.		62
22	An evaluation of single-pass versus multiple-pass backpack electrofishing to estimate trends in species abundance and richness in prairie streams. Transactions of the Kansas Academy of Science, 2006, 109, 131-138.	0.1	54
23	Multiâ€scale effects of impoundments on genetic structure of creek chub (<i>Semotilus) Tj ETQq1 1 0.784314 r</i>	gBT /Over 2.4	locန္ 10 Tf 5
24	Influence of spatial positioning within stream networks on fish assemblage structure in the Kansas River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 143-156.	1.4	48
25	Longâ€Term Dynamics of Native and Nonnative Fishes in the San Juan River, New Mexico and Utah, under a Partially Managed Flow Regime. Transactions of the American Fisheries Society, 2012, 141, 645-659.	1.4	46
26	Effects of Barriers and Thermal Refugia on Local Movement of the Threatened Leopard Darter, Percina pantherina. Environmental Biology of Fishes, 2003, 66, 391-400.	1.0	45
27	Effects of reservoir connectivity on stream fish assemblages in the Great Plains. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 480-493.	1.4	45
28	Convergence of fish communities from the littoral zone of reservoirs. Freshwater Biology, 2009, 54, 1163-1177.	2.4	45
29	Structure of Littoral-zone Fish Communities in Relation to Habitat, Physical, and Chemical Gradients in a Southern Reservoir. Environmental Biology of Fishes, 2002, 63, 253-263.	1.0	43
30	Interspecific Comparisons and the Potential Importance of Nutrient Excretion by Benthic Fishes in a Large Reservoir. Transactions of the American Fisheries Society, 2002, 131, 260-270.	1.4	41
31	Fish Community Responses to Mechanical Removal of Nonnative Fishes in a Large Southwestern River. Fisheries, 2014, 39, 352-363.	0.8	41
32	Fragmentation, connectivity and fish species persistence in freshwater ecosystems. , 2015, , 292-323.		40
33	River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community. Molecular Ecology, 2017, 26, 2687-2697.	3.9	40
34	Spatially variable response of native fish assemblages to discharge, predators and habitat characteristics in an arid-land river. Freshwater Biology, 2011, 56, 1403-1416.	2.4	38
35	Quantifying flow–ecology relationships with functional linear models. Hydrological Sciences Journal, 2014, 59, 629-644.	2.6	38
36	Spatial and temporal variation of fish communities in secondary channels of the San Juan River, New Mexico and Utah. Environmental Biology of Fishes, 1997, 49, 417-434.	1.0	37

#	Article	IF	CITATIONS
37	Modular Experimental Riffle–Pool Stream System. Transactions of the American Fisheries Society, 2006, 135, 1559-1566.	1.4	37
38	Extreme drought causes fish recruitment failure in a fragmented Great Plains riverscape. Ecohydrology, 2019, 12, e2120.	2.4	36
39	Ecosystem effects of water column minnows in experimental streams. Oecologia, 2001, 126, 247-253.	2.0	35
40	Flow regime affects availability of native and nonnative prey of an endangered predator. Biological Conservation, 2007, 138, 330-340.	4.1	33
41	Effects of the herbivorous minnow, southern redbelly dace (Phoxinus erythrogaster), on stream productivity and ecosystem structure. Oecologia, 2007, 151, 69-81.	2.0	33
42	Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought. Ecology, 2010, 91, 1048-1062.	3.2	33
43	Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales. Oecologia, 2015, 177, 545-559.	2.0	33
44	Habitat Use and Association of Native and Nonnative Fishes in the San Juan River, New Mexico and Utah. Copeia, 1999, 1999, 321.	1.3	32
45	Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks. Freshwater Science, 2015, 34, 1510-1526.	1.8	32
46	The Biota of Intermittent Rivers and Ephemeral Streams: Fishes. , 2017, , 273-298.		32
47	Fish Assemblages of Reservoirs, Illustrated by Lake Texoma (Oklahoma-Texas, USA) as a Representative System. Lake and Reservoir Management, 2004, 20, 219-239.	1.3	31
48	Disturbance frequency and functional identity mediate ecosystem processes in prairie streams. Oikos, 2009, 118, 917-933.	2.7	30
49	The first to arrive and the last to leave: colonisation and extinction dynamics of common and rare fishes in intermittent prairie streams. Freshwater Biology, 2016, 61, 1321-1334.	2.4	29
50	Nutrient loading and grazing by the minnow Phoxinus erythrogaster shift periphyton abundance and stoichiometry in mesocosms. Freshwater Biology, 2011, 56, 1133-1146.	2.4	28
51	Fish Community Distributions and Movements in Two Tributaries of the San Juan River, USA. Transactions of the American Fisheries Society, 2015, 144, 1013-1028.	1.4	26
52	Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams. Oecologia, 2018, 188, 1133-1144.	2.0	25
53	Density-Dependent Overwinter Survival and Growth of Red Shiners from a Southwestern River. Transactions of the American Fisheries Society, 2001, 130, 478-488.	1.4	24
54	Patterns of fish movement at a desert river confluence. Ecology of Freshwater Fish, 2018, 27, 492-505.	1.4	24

#	Article	IF	CITATIONS
55	Pockets of resistance: Response of arid″and fish communities to climate, hydrology, and wildfire. Freshwater Biology, 2019, 64, 761-777.	2.4	24
56	Habitat Use and Susceptibility to Predation of Four Prairie Stream Fishes: Implications for Conservation of the Endangered Topeka Shiner. Copeia, 2005, 2005, 38-47.	1.3	23
57	Can fishways mitigate fragmentation effects on Great Plains fish communities?. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 121-130.	1.4	22
58	Nowhere to swim: interspecific responses of prairie stream fishes in isolated pools during severe drought. Aquatic Sciences, 2020, 82, 1.	1.5	22
59	Multiple watershed alterations influence fish community structure in <scp>G</scp> reat <scp>P</scp> lains prairie streams. Ecology of Freshwater Fish, 2016, 25, 141-155.	1.4	20
60	Survival of and Tag Retention in Southern Redbelly Dace Injected with Two Sizes of PIT Tags. North American Journal of Fisheries Management, 2016, 36, 1386-1394.	1.0	20
61	Waterfall formation at a desert river–reservoir delta isolates endangered fishes. River Research and Applications, 2018, 34, 948-956.	1.7	20
62	Spatial Variation in δ15N and δ13C Isotopes in the San Juan River, New Mexico and Utah: Implications for the Conservation of Native Fishes. Environmental Biology of Fishes, 2006, 75, 197-207.	1.0	19
63	Dynamic influences of nutrients and grazing fish on periphyton during recovery from flood. Journal of the North American Benthological Society, 2011, 30, 331-345.	3.1	19
64	Metapopulation analysis indicates native and nonâ€native fishes respond differently to effects of wildfire on desert streams. Ecology of Freshwater Fish, 2016, 25, 376-392.	1.4	18
65	Toward Improved Understanding of Streamflow Effects on Freshwater Fishes. Fisheries, 2022, 47, 290-298.	0.8	18
66	Use of Stable Isotopes to Test Literature-based Trophic Classifications of Small-bodied Stream Fishes. American Midland Naturalist, 2006, 156, 1-10.	0.4	17
67	Towards a mechanistic understanding of fish species niche divergence along a river continuum. Ecosphere, 2014, 5, 1-18.	2.2	16
68	Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams. Freshwater Biology, 2016, 61, 887-898.	2.4	16
69	Animal effects on dissolved organic carbon bioavailability in an algal controlled ecosystem. Freshwater Biology, 2020, 65, 1298-1310.	2.4	16
70	Harmony on the prairie? Grassland plant and animal community responses to variation in climate across landâ€use gradients. Ecology, 2020, 101, e02986.	3.2	16
71	The Response of Water Willow Justicia americana to Different Water Inundation and Desiccation Regimes. North American Journal of Fisheries Management, 2005, 25, 1476-1485.	1.0	15
72	Effects of American Water Willow Establishment on Density, Growth, Diet, and Condition of Ageâ€0 Largemouth Bass in Kansas Reservoirs. Transactions of the American Fisheries Society, 2009, 138, 269-279.	1.4	15

#	Article	IF	CITATIONS
73	Factors associated with the success of native and nonnative species in an unfragmented arid-land riverscape. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1134-1145.	1.4	15
74	Fine-scale movement and habitat use of a prairie stream fish assemblage. Oecologia, 2018, 186, 831-842.	2.0	15
75	Movement ecology of imperilled fish in a novel ecosystem: Riverâ€reservoir movements by razorback sucker and translocations to aid conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1540-1551.	2.0	15
76	Dispersal drives changes in fish community abundance in intermittent stream networks. River Research and Applications, 2020, 36, 797-806.	1.7	15
77	Stream-Channel Position of Adult Rainbow Trout Downstream of Navajo Reservoir, New Mexico, Following Changes inReservoir Release. North American Journal of Fisheries Management, 2000, 20, 250-258.	1.0	14
78	Biomass loss and change in species dominance shift stream community excretion stoichiometry during severe drought. Freshwater Biology, 2020, 65, 403-416.	2.4	14
79	A TEST FOR COMMUNITY CHANGE USING A NULL MODEL APPROACH. , 2005, 15, 1761-1771.		13
80	Direct and indirect effects of central stoneroller (<i>Campostoma anomalum</i>) on mesocosm recovery following a flood: can macroconsumers affect denitrification?. Journal of the North American Benthological Society, 2011, 30, 840-852.	3.1	12
81	Comparative conservation genetics of protected endemic fishes in an arid-land riverscape. Conservation Genetics, 2015, 16, 875-888.	1.5	10
82	Introduced Flathead Catfish Consumptive Demand on Native Fishes of the Upper Gila River, New Mexico. North American Journal of Fisheries Management, 2016, 36, 55-61.	1.0	10
83	Consumption of Native and Nonnative Fishes by Introduced Largemouth Bass (Micropterus salmoides) in the San Juan River, New Mexico. Southwestern Naturalist, 2008, 53, 105-108.	0.1	9
84	Annual variation of community biomass is lower in more diverse stream fish communities. Oikos, 2011, 120, 582-590.	2.7	9
85	Identifying the source population of fish re-colonizing an arid-land stream following wildfire-induced extirpation using otolith microchemistry. Hydrobiologia, 2017, 797, 29-45.	2.0	9
86	Reservoir fish assemblage structure across an aquatic ecotone: Can riverâ€reservoir interfaces provide conservation and management opportunities?. Fisheries Management and Ecology, 2021, 28, 1-13.	2.0	9
87	Trophic niches of native and nonnative fishes along a river-reservoir continuum. Scientific Reports, 2021, 11, 12140.	3.3	9
88	Feeding Ecology of Three Omnivorous Fishes in Lake Texoma (Oklahoma-Texas). Southwestern Naturalist, 2001, 46, 23.	0.1	8
89	Rediscovery of Labidesthes sicculus (Atherinidae) in Lake Texoma (Oklahoma-Texas). Southwestern Naturalist, 2002, 47, 142.	0.1	8
90	Thermal performance of larval longfin dace (Agosia chrysogaster), with implications for climate change. Environmental Biology of Fishes, 2015, 98, 395-404.	1.0	8

#	Article	IF	CITATIONS
91	The North American Freshwater Migratory Fish Database (<scp>NAFMFD</scp>): Characterizing the migratory life histories of freshwater fishes of Canada, the United States and Mexico. Journal of Biogeography, 2022, 49, 1193-1203.	3.0	8
92	Failure to achieve recommended environmental flows coincides with declining fish populations: Longâ€ŧerm trends in regulated and unregulated rivers. Freshwater Biology, 2022, 67, 1631-1643.	2.4	8
93	Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA. Environmental Biology of Fishes, 2005, 73, 21-36.	1.0	7
94	Feeding Ecology of Early Life Stage Razorback Sucker Relative to Other Sucker Species in the San Juan River, Utah. Transactions of the American Fisheries Society, 2019, 148, 938-951.	1.4	7
95	Temperature effects on performance and physiology of two prairie stream minnows. , 2019, 7, coz063.		7
96	Hatcheryâ€reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 24-38.	2.0	7
97	Spawning Locations within and among Tributaries Influence Flannelmouth Sucker Offspring Experience. Transactions of the American Fisheries Society, 2019, 148, 963-977.	1.4	6
98	Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38Âyears. Hydrobiologia, 2021, 848, 1231-1248.	2.0	6
99	Impacts of Small Impoundments On An Intermittent Headwater Stream Community. Southwestern Naturalist, 2018, 63, 34-41.	0.1	6
100	Razorback Sucker Movement Strategies across a River–Reservoir Habitat Complex. Transactions of the American Fisheries Society, 2020, 149, 620-634.	1.4	5
101	EFFECTS OF ARTIFICIAL LIGHTING AND PRESENCE OF MENIDIA BERYLLINA ON GROWTH AND DIET OF LABIDESTHES SICCULUS. Southwestern Naturalist, 2006, 51, 510-513.	0.1	4
102	Temperature-dependent performance as a driver of warm-water fish species replacement along the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 394-405.	1.4	4
103	Response of aridâ€land macroinvertebrate communities to extremes of drought, wildfire, and monsoonal flooding. River Research and Applications, 2022, 38, 832-845.	1.7	4
104	Influence of macroconsumers, stream position, and nutrient gradients on invertebrate assemblage development following flooding in intermittent prairie streams. Hydrobiologia, 2013, 714, 169-182.	2.0	3
105	Assessing Linkages Between Small Impoundments and Long-term Trajectories of Prairie Stream Fish Assemblages. American Midland Naturalist, 2021, 185, .	0.4	3
106	How fast is too fast? Water velocity differentially affects growth of four Gila River, native cyprinids. Ecology of Freshwater Fish, 2022, 31, 118-128.	1.4	3
107	Do mobile consumers homogenize the distribution of resources in stream food webs? A test with overlapping fish and mussel aggregations. Freshwater Biology, 2022, 67, 684-694.	2.4	3
108	Testing metabolic cold adaptation as a driver of warm-water fish species replacement along the river continuum. Environmental Biology of Fishes, 2017, 100, 265-279.	1.0	2

#	Article	IF	CITATIONS
109	Influence of fishes on macroinvertebrate communities and insect emergence production in in intermittent stream refuges. Freshwater Biology, 2020, 65, 1412-1428.	2.4	2
110	Differential Responses of Native Fishes in Two Headwater Tributaries of the Gila River Following Severe Wildfires. Western North American Naturalist, 2022, 82, .	0.4	2
111	Using path analysis to determine interacting effects of biotic and abiotic factors on patch-scale biogeochemical rates in a prairie stream. Aquatic Sciences, 2020, 82, 1.	1.5	1
112	Disentangling effects of predators and landscape factors as drivers of stream fish community structure. Freshwater Biology, 2021, 66, 656-668.	2.4	1
113	AGE-SPECIFIC PATTERNS OF OCCURRENCE, DENSITY, AND GROWTH OF TWO CYPRINID FISHES IN HEADWATER PRAIRIE STREAMS. Southwestern Naturalist, 2022, 65, .	0.1	1
114	Management and Ecology of Lake and Reservoir Fisheries. Journal of Environmental Quality, 2003, 32, 1150-1150.	2.0	0
115	Do fineâ€scale experiments underestimate predator consumption rates?. Journal of Animal Ecology, 2021, 90, 2391-2403.	2.8	0
116	Demography Predicts Genetic Effective Size in a Desert Stream Fish Community. American Naturalist, 2022, 200, 275-291.	2.1	0