Toshimi Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4474738/publications.pdf

Version: 2024-02-01

243 papers

11,173 citations

24978 57 h-index 97 g-index

250 all docs

250 docs citations

250 times ranked

7474 citing authors

#	Article	IF	CITATIONS
1	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews, 2005, 105, 1401-1444.	23.0	1,398
2	Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 2002, 14, 1445-1447.	3.2	397
3	Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. Journal of the American Chemical Society, 2001, 123, 8785-8789.	6.6	290
4	Stereochemical Effect of Evenâ^'Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphiles. Journal of the American Chemical Society, 1997, 119, 2812-2818.	6 . 6	234
5	Self-Assembly of a Sugar-Based Gelator in Water:  Its Remarkable Diversity in Gelation Ability and Aggregate Structure. Langmuir, 2001, 17, 7229-7232.	1.6	232
6	Dicarboxylic Oligopeptide Bolaamphiphiles:Â Proton-Triggered Self-Assembly of Microtubes with Loose Solid Surfaces. Langmuir, 1998, 14, 4978-4986.	1.6	224
7	Nanotube Formation from Renewable Resources via Coiled Nanofibers. Advanced Materials, 2001, 13, 715-718.	11.1	208
8	Vesicle assembly in microtubes. Nature, 1996, 383, 487-488.	13.7	186
9	Spectral Characterization of Self-Assemblies of Aldopyranoside Amphiphilic Gelators: What is the Essential Structural Difference Between Simple Amphiphiles and Bolaamphiphiles?. Chemistry - A European Journal, 2002, 8, 2684.	1.7	173
10	Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles. Chemistry of Materials, 2002, 14, 3047-3053.	3.2	169
11	Internucleobase-Interaction-Directed Self-Assembly of Nanofibers from Homo- and Heteroditopic 1,ï‰-Nucleobase Bolaamphiphiles. Journal of the American Chemical Society, 2001, 123, 5947-5955.	6.6	162
12	Lipid Nanotubes and Microtubes:  Experimental Evidence for Unsymmetrical Monolayer Membrane Formation from Unsymmetrical Bolaamphiphiles. Langmuir, 2004, 20, 5969-5977.	1.6	156
13	Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews, 2020, 120, 2347-2407.	23.0	147
14	Molecular-Level Helical Stack of a Nucleotide-Appended Oligo(p-phenylenevinylene) Directed by Supramolecular Self-Assembly with a Complementary Oligonucleotide as a Template. Journal of the American Chemical Society, 2006, 128, 13298-13304.	6.6	144
15	Oligonucleotide-Templated Self-Assembly of Nucleotide Bolaamphiphiles: DNA-Like Nanofibers Edged by a Double-Helical Arrangement of A–T Base Pairs. Angewandte Chemie - International Edition, 2003, 42, 1009-1012.	7.2	134
16	Lipid Nanotubes: A Unique Template To Create Diverse One-Dimensional Nanostructures. Chemistry of Materials, 2008, 20, 625-633.	3.2	129
17	Current/Voltage Characteristics of Monolayers of Redox-Switchable [2]Catenanes on Gold. Advanced Materials, 2000, 12, 1099-1102.	11.1	127
18	Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds. Journal of the American Chemical Society, 2002, 124, 10674-10675.	6.6	127

#	Article	IF	CITATIONS
19	Switching "On―and "Off―the Expression of Chirality in Peptide Rotaxanes. Journal of the American Chemical Society, 2002, 124, 2939-2950.	6.6	118
20	Creation of Novel Double-Helical Silica Nanotubes Using Binary Gel System. Langmuir, 2002, 18, 8724-8727.	1.6	116
21	Functionalizable Organic Nanochannels Based on Lipid Nanotubes:  Encapsulation and Nanofluidic Behavior of Biomacromolecules. Chemistry of Materials, 2007, 19, 3553-3560.	3.2	110
22	Morphological Control of Helical Solid Bilayers in High-Axial-Ratio Nanostructures Through Binary Self-Assembly. Chemistry - A European Journal, 2002, 8, 5494-5500.	1.7	106
23	Bottom-Up Synthesis and Structural Properties of Self-Assembled High-Axial-Ratio Nanostructures. Macromolecular Rapid Communications, 2002, 23, 311-331.	2.0	102
24	Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes. Chemistry - A European Journal, 2003, 9, 5307-5313.	1.7	100
25	Threading-Followed-by-Shrinking Protocol for the Synthesis of a [2]Rotaxane Incorporating a Pd(II)â^'Salophen Moiety. Journal of the American Chemical Society, 2004, 126, 16740-16741.	6.6	95
26	Preparation of Mesoscale and Macroscale Silica Nanotubes Using a Sugar-Appended Azonaphthol Gelator Assembly. Nano Letters, 2002, 2, 17-20.	4.5	94
27	Nanometer-Level Solâ^'Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica. Chemistry of Materials, 2003, 15, 2141-2145.	3.2	94
28	Glycolipid Nanotube Hollow Cylinders as Substrates:Â Fabrication of One-Dimensional Metallicâ^'Organic Nanocomposites and Metal Nanowires. Chemistry of Materials, 2004, 16, 2826-2831.	3.2	94
29	Molecular Structure of Glucopyranosylamide Lipid and Nanotube Morphology. Langmuir, 2005, 21, 743-750.	1.6	93
30	Self-Assembly of Discrete Organic Nanotubes. Bulletin of the Chemical Society of Japan, 2018, 91, 623-668.	2.0	91
31	Polymerization of Bolaform Butadiyne 1-Glucosamide in Self-Assembled Nanoscale-Fiber Morphology. Macromolecules, 1998, 31, 9403-9405.	2.2	89
32	Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene) Tj ETQq0 0 0	rgBT_/Ove	rlogk 10 Tf 50
33	Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles:Â Energy-Filtering Transmission Electron Microscopic Observation and Evenâ^'Odd Effect of Connecting Bridge. Langmuir, 1999, 15, 4757-4764.	1.6	88
34	Self-Assembly and Thermal Phase Transition Behavior of Unsymmetrical Bolaamphiphiles Having Glucose- and Amino-Hydrophilic Headgroups. Langmuir, 2007, 23, 4634-4641.	1.6	88
35	Aligning a Single-Lipid Nanotube with Moderate Stiffness. Angewandte Chemie - International Edition, 2003, 42, 72-74.	7.2	86
36	Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir, 2004, 20, 2060-2065.	1.6	86

#	Article	IF	Citations
37	Self-organized nanotube materials and their application in bioengineering. Polymer Journal, 2014, 46, 831-858.	1.3	80
38	Selective Construction of Supramolecular Nanotube Hosts with Cationic Inner Surfaces. Advanced Materials, 2005, 17, 2732-2736.	11.1	79
39	Bottom-Up Synthesis and Morphological Control of High-Axial-Ratio Nanostructures through Molecular Self-Assembly. Polymer Journal, 2003, 35, 1-22.	1.3	75
40	Soft Nanotube Hydrogels Functioning As Artificial Chaperones. ACS Nano, 2012, 6, 5249-5258.	7.3	74
41	Conformational and Thermal Phase Behavior of Oligomethylene Chains Constrained by Carbohydrate Hydrogen-Bond Networks. Journal of the American Chemical Society, 2000, 122, 12327-12333.	6.6	73
42	Direct Solâ^'Gel Replication without Catalyst in an Aqueous Gel System:Â From a Lipid Nanotube with a Single Bilayer Wall to a Uniform Silica Hollow Cylinder with an Ultrathin Wall. Chemistry of Materials, 2004, 16, 250-254.	3.2	73
43	Polymerization in Nanometer-Sized Fibers:  Molecular Packing Order and Polymerizability. Macromolecules, 2000, 33, 9233-9238.	2.2	72
44	STM Observation of Alkyl-Chain-Assisted Self-Assembled Monolayers of Pyridine-Coordinated Porphyrin Rhodium Chlorides. Langmuir, 2004, 20, 5454-5459.	1.6	71
45	Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. Langmuir, 2016, 32, 12242-12264.	1.6	69
46	Noncovalent Formation of Polyglycine II-Type Structure by Hexagonal Self-Assembly of Linear Polymolecular Chains. Journal of the American Chemical Society, 1997, 119, 6209-6210.	6.6	68
47	Reversible Photochemical Conversion of Helicity in Self-Assembled Nanofibers from a 1,ï‰-Thymidylic Acid Appended Bolaamphiphile. Angewandte Chemie - International Edition, 2006, 45, 4601-4604.	7.2	68
48	Selfâ€assembled organic nanotubes: Toward attoliter chemistry. Journal of Polymer Science Part A, 2008, 46, 2601-2611.	2.5	68
49	Local Environment and Property of Water inside the Hollow Cylinder of a Lipid Nanotube. Langmuir, 2005, 21, 721-727.	1.6	67
50	Instant Preparation of Self-Assembled Metal-Complexed Lipid Nanotubes That Act as Templates to Produce Metal-Oxide Nanotubes. Advanced Materials, 2007, 19, 242-246.	11.1	67
51	Helical Arrays of CdS Nanoparticles Tracing on a Functionalized Chiral Template of Glycolipid Nanotubes. Chemistry of Materials, 2006, 18, 403-406.	3.2	65
52	Self-assembling structures of steroidal derivatives in organic solvents and their sol–gel transcription into double-walled transition-metal oxide nanotubes. Journal of Materials Chemistry, 2005, 15, 3979.	6.7	64
53	Self-assembled lipid nanotube hosts: The dimension control for encapsulation of nanometer-scale guest substances. Journal of Polymer Science Part A, 2006, 44, 5137-5152.	2.5	63
54	Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence. Soft Matter, 2008, 4, 1681.	1.2	63

#	Article	IF	Citations
55	Supramolecular Nanotube Hydrogels: Remarkable Resistance Effect of Confined Proteins to Denaturants. Chemistry of Materials, 2009, 21, 5892-5898.	3.2	63
56	Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 1998, 22, 959-972.	1.4	62
57	Soft Nanotubes Acting as a Light-Harvesting Antenna System. Chemistry of Materials, 2012, 24, 209-214.	3.2	59
58	Organic supramolecular architectures and their sol-gel transcription to Silica nanotubes. Chemical Record, 2003, 3, 212-224.	2.9	58
59	Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders. Chemical Communications, 2004, , 500-501.	2.2	57
60	Molecular Self-Assembly into One-Dimensional Nanotube Architectures and Exploitation of Their Functions. Bulletin of the Chemical Society of Japan, 2008, 81, 1554-1566.	2.0	57
61	Confinement Effect of Organic Nanotubes Toward Green Fluorescent Protein (GFP) Depending on the Inner Diameter Size. Chemistry - A European Journal, 2010, 16, 4217-4223.	1.7	56
62	pH-dependent reversible polymers formed from cyclic sugar- and aromatic boronic acid-based bolaamphiphiles. Chemical Communications, 2000, , 881-882.	2.2	54
63	Regulation of Silica Nanotube Diameters:Â Solâ^'Gel Transcription Using Solvent-Sensitive Morphological Change of Peptidic Lipid Nanotubes as Templates. Chemistry of Materials, 2007, 19, 1329-1334.	3.2	53
64	Self-assembled peptide fibers from valylvaline bola-amphiphiles by a parallel \hat{l}^2 -sheet network. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 346-352.	1.1	51
65	Self-Assembling Structures of Long-Chain Sugar-Based Amphiphiles Influenced by the Introduction of Double Bonds. Chemistry - A European Journal, 2005, 11, 5538-5544.	1.7	51
66	Supramolecular Nanotube <i>endo</i> Sensing for a Guest Protein. Small, 2008, 4, 561-565.	5.2	51
67	New Vistas in Dehydrocoupling Polymerization of Hydrosilanes: Platinum Complex-Catalyzed Dehydrocoupling of Cyclic and Acyclic Secondary Silanes. Chemistry Letters, 1997, 26, 785-786.	0.7	48
68	Growth Process and Molecular Packing of a Self-assembled Lipid Nanotube:  Phase-Contrast Transmission Electron Microscopy and XRD Analyses. Langmuir, 2008, 24, 709-713.	1.6	47
69	Self-assembling properties of synthetic peptidic lipids. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1147, 50-58.	1.4	46
70	Intralayer hydrogen-bond-directed self-assembly of nano-fibers from dicarboxylic valylvaline bolaamphiphiles. Chemical Communications, 1998, , 1791-1792.	2.2	46
71	Photoresponsive Soft Nanotubes for Controlled Guest Release. Chemistry - A European Journal, 2011, 17, 5251-5255.	1.7	45
72	Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer. Biomaterials, 2006, 27, 4177-4182.	5.7	43

#	Article	IF	CITATIONS
73	Alkyl Chain Length Dependence of the Self-Organized Structure of Alkyl-Substituted Phthalocyanines. Langmuir, 2008, 24, 4708-4714.	1.6	43
74	Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chemical Communications, 2015, 51, 11104-11107.	2.2	43
75	Multilayer structure of an unsymmetrical monolayer lipid membrane with a  head-to-tail' interface. Chemical Communications, 2001, , 2442-2443.	2.2	42
76	A Quartz Crystal Microbalance Method for Rapid Detection and Differentiation of Shiga Toxins by Applying a Monoalkyl Globobioside as the Toxin Ligand. Biomacromolecules, 2002, 3, 411-414.	2.6	42
77	Encapsulation of Ferritin within a Hollow Cylinder of Glycolipid Nanotubes. Chemistry Letters, 2005, 34, 232-233.	0.7	42
78	Self-assembly of glycolipids on silica nanotube templates yielding hybrid nanotubes with concentric organic and inorganic layers. Journal of Materials Chemistry, 2005, 15, 743.	6.7	42
79	Hydrogel behavior of a sugar-based gelator by introduction of an unsaturated moiety as a hydrophobic group. Organic and Biomolecular Chemistry, 2006, 4, 2033.	1.5	42
80	Antimicrobial Nanotubes Consisting of Agâ€Embedded Peptidic Lipidâ€Bilayer Membranes as Delivery Vehicles. Advanced Materials, 2009, 21, 1742-1745.	11.1	41
81	Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chemical Communications, 2005, , 4411.	2.2	40
82	Fluorescent Nanotubes Consisting of CdS-Embedded Bilayer Membranes of a Peptide Lipid. Advanced Materials, 2007, 19, 1055-1058.	11.1	40
83	Necklace-like Chains of Hybrid Nanospheres Consisting of Pd Nanocystals and Peptidic Lipids. Journal of the American Chemical Society, 2009, 131, 2456-2457.	6.6	40
84	Molecular Motion of Surface-Immobilized Double-Decker Phthalocyanine Complexes. Journal of the American Chemical Society, 2009, 131, 17808-17813.	6.6	39
85	Organic nanotubes for drug loading and cellular delivery. International Journal of Pharmaceutics, 2011, 413, 271-278.	2.6	39
86	DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis. Biosensors and Bioelectronics, 2007, 22, 1974-1981.	5.3	37
87	Photoinduced Morphological Transformations of Soft Nanotubes. Chemistry - A European Journal, 2015, 21, 8832-8839.	1.7	36
88	Polymorphism of monolayer lipid membrane structures made from unsymmetrical bolaamphiphiles. Carbohydrate Research, 2005, 340, 2502-2509.	1.1	35
89	Molecular Monolayer Nanotubes Having 7–9 nm Inner Diameters Covered with Different Inner and Outer Surfaces. Chemistry Letters, 2007, 36, 896-897.	0.7	35
90	Title is missing!. Angewandte Chemie, 2003, 115, 1039-1042.	1.6	34

#	Article	IF	Citations
91	Lipid Nanotube Tailored Fabrication of Uniquely Shaped Polydopamine Nanofibers as Photothermal Converters. Chemistry - A European Journal, 2016, 22, 4345-4350.	1.7	34
92	Electrochemical copolymerization of 3-dodecylthiophene and 3-methylthiophene. Die Makromolekulare Chemie, 1990, 191, 313-319.	1.1	32
93	FT-IR Study of the Interlamellar Water Confined in Glycolipid Nanotube Walls. Langmuir, 2005, 21, 4610-4614.	1.6	32
94	Stabilization of an asymmetric bolaamphiphilic sugar-based crown ether hydrogel by hydrogen bonding interaction and its sol–gel transcription. Tetrahedron, 2007, 63, 7449-7456.	1.0	32
95	Soft Nanotubes with a Hydrophobic Channel Hybridized with Au Nanoparticles: Photothermal Dispersion/Aggregation Control of C60 in Water. Advanced Functional Materials, 2013, 23, 1677-1683.	7.8	31
96	Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel. Journal of Robotics and Mechatronics, 2007, 19, 528-534.	0.5	31
97	One-dimensional organization of copper nanoparticles by chemical reduction of lipid-copper hybrid nanofibers. Chemical Communications, 2002, , 2492-2493.	2.2	30
98	Highly efficient production of various organic nanotubes with different surfaces and their application to an adsorbent. Soft Matter, 2010, 6, 4528.	1.2	30
99	Hybrid Organic Nanotubes with Dual Functionalities Localized on Cylindrical Nanochannels Control the Release of Doxorubicin. Advanced Healthcare Materials, 2012, 1, 699-706.	3.9	30
100	Supramolecular Polyglycine II-Type Structure of Glycylglycine Bolaamphiphile. Supramolecular Chemistry, 1998, 9, 183-189.	1.5	29
101	Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder. Chemical Communications, 2012, 48, 8625.	2.2	29
102	Cross-Section Molecular Imaging of Supramolecular Microtubes with Contact Atomic Force Microscopy. Angewandte Chemie - International Edition, 1998, 37, 3260-3262.	7.2	27
103	Preparation of Porphyrin-stoppered Rotaxane Aiming at Immobilization on Substrate. Chemistry Letters, 2002, 31, 174-175.	0.7	27
104	Transition Metal(II)–Salen and –Salophen Macrocyclic Complexes for Rotaxane Formation: Syntheses and Crystal Structures. European Journal of Inorganic Chemistry, 2007, 2007, 4229-4237.	1.0	27
105	Copper(II)-coordinated organic nanotube: A novel heterogeneous catalyst for various oxidation reactions. Catalysis Communications, 2010, 12, 9-13.	1.6	26
106	Functionalized organic nanotubes as tubular nonviral gene transfer vector. Journal of Controlled Release, 2011, 156, 70-75.	4.8	26
107	Biologically responsive, sustainable release from metallo-drug coordinated 1D nanostructures. Journal of Materials Chemistry B, 2013, 1, 276-283.	2.9	26
108	Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 4496-4507.	1.2	26

#	Article	IF	CITATIONS
109	Soft nanotubes acting as confinement effecters and chirality inducers for achiral polythiophenes. Chemical Communications, 2016, 52, 1346-1349.	2.2	26
110	Non-mesogenic crystal structure of a synthetic 1-d-glucosamide bolaamphiphile. Carbohydrate Research, 1997, 302, 139-147.	1.1	24
111	Synthesis of Novel α,ï‰-Type 1-Glucosamide and 1-Galactosamide Bolaamphiphiles. Journal of Carbohydrate Chemistry, 1998, 17, 405-416.	0.4	24
112	Controlling Wall Thickness of Silica Nanotubes within 4-nm Precision. Chemistry Letters, 2004, 33, 504-505.	0.7	24
113	Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. International Journal of Pharmaceutics, 2014, 469, 190-196.	2.6	24
114	Formation of complementary and cooperative hydrogen-bonding networks of sugar-based bolaamphiphiles in water. Chemical Communications, 1996, , 1057.	2.2	23
115	Aligned Nanocables: Controlled Sheathing of CuO Nanowires by a Selfâ€Assembled Tubular Glycolipid. Advanced Materials, 2007, 19, 4194-4197.	11.1	23
116	Self-assembled helical ribbon and tubes of alanine-based amphiphiles induced by two different formation mechanisms. Tetrahedron, 2008, 64, 1301-1308.	1.0	23
117	Self-assembled organic nanotubes embedding hydrophobic molecules within solid bilayer membranes. Soft Matter, 2011, 7, 85-90.	1.2	23
118	Synthesis of a [2]Rotaxane Incorporating a Ni(II)â^'Salen Moiety:  Evidence of Ring-Opening-and-Closing Protocol. Organic Letters, 2006, 8, 2341-2344.	2.4	22
119	Diverse Morphologies of Selfâ€Assemblies from Homoditopic 1,18â€Nucleotideâ€Appended Bolaamphiphiles: Effects of Nucleobases and Complementary Oligonucleotides. Small, 2010, 6, 1131-1139.	5.2	22
120	BoroxineÂNanotubes: Moistureâ€Sensitive Morphological Transformation and Guest Release. Advanced Functional Materials, 2014, 24, 603-609.	7.8	22
121	Cation binding cyclic peptides composed of imino acid residues. Biopolymers, 1980, 19, 2247-2265.	1.2	21
122	Crystal structure and conformation of a cyclic tetrapeptidecyclo(L-Pro-Sar)2 containing all-cis peptide units. Biopolymers, 1983, 22, 633-641.	1.2	21
123	A newly prepared surface-treated oxystarch for removal of urea. Journal of Biomedical Materials Research Part B, 1983, 17, 597-612.	3.0	21
124	Molecular structures and hydrogen-bond networks in crystals of synthetic 1-d-galactosamide bolaamphiphiles. Carbohydrate Research, 2000, 326, 56-66.	1.1	21
125	Preliminary communication Liquid crystalline cardanyl β-D-glucopyranosides. Liquid Crystals, 2003, 30, 747-749.	0.9	20
126	Metal-complexed nanofiber formation in water from dicarboxylic valylvaline bolaamphiphiles. Journal of Colloid and Interface Science, 2004, 273, 394-399.	5.0	20

#	Article	IF	CITATIONS
127	Dimension Control of Glycolipid Nanotubes by Successive Use of Vesicle Extrusion and Porous Template. Chemistry of Materials, 2006, 18, 1577-1580.	3.2	20
128	Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. International Journal of Nanomedicine, 2014, 9, 5811.	3.3	20
129	Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chemical Communications, 2015, 51, 6816-6819.	2.2	20
130	Effect of Photoinduced Size Changes on Protein Refolding and Transport Abilities of Soft Nanotubes. Chemistry - A European Journal, 2016, 22, 7198-7205.	1.7	20
131	Photoreaction of trans-4-octadecanoxycinnamic acid in monolayers. Thin Solid Films, 1985, 133, 165-173.	0.8	19
132	Synthesis of Sphingadienine-type Glucocerebrosides 1. Tetrahedron, 2000, 56, 533-545.	1.0	19
133	NMR and X-ray Crystallographic Analysis of Thermodynamically Stable Tetraphenylporphyrin-Stoppered Rotaxanes. European Journal of Organic Chemistry, 2003, 2003, 3744-3751.	1.2	19
134	Synthesis and characterisation of macrocyclic palladium(ii)â€"sodium(i) complexes: generation of an unusual metal-mediated electron delocalisation. Dalton Transactions, 2004, , 1513-1515.	1.6	19
135	Scanning Tunneling Microscopy Observation of Self-Assembled Monolayers of Strapped Porphyrins. Langmuir, 2008, 24, 12877-12882.	1.6	19
136	Semisolid Phase Synthesis of Metal-complexed Organic Nanotubes. Chemistry Letters, 2010, 39, 822-823.	0.7	19
137	A hydro/organo/hybrid gelator: A peptide lipid with turning aspartame head groups. Journal of Colloid and Interface Science, 2013, 395, 154-160.	5.0	19
138	Dynamic lightâ€scattering measurement of sieving polymer solutions for protein separation on SDS CE. Electrophoresis, 2009, 30, 3607-3612.	1.3	18
139	Solvent-chirality selective organogelation by chiral aspartame lipids. Soft Matter, 2012, 8, 11979.	1.2	18
140	Control of Self-assembled Morphology and Molecular Packing of Asymmetric Glycolipids by Association/Dissociation with Poly(thiopheneboronic acid). Langmuir, 2013, 29, 13291-13298.	1.6	18
141	Formation of Self-Assembled Glycolipid Nanotubes with Bilayer Sheets. Journal of Nanoscience and Nanotechnology, 2007, 7, 960-964.	0.9	17
142	Single bilayered organic nanotubes: anchors for production of a reusable catalyst with nickel ions. Green Chemistry, 2011, 13, 1138.	4.6	17
143	Effects of oligoDNA template length and sequence on binary self-assembly of a nucleotide bolaamphiphile. Organic and Biomolecular Chemistry, 2007, 5, 3450.	1.5	16
144	Cation-binding Properties of Ionophorous Cyclic Octapeptide in Acetonitrile Solution. Bulletin of the Chemical Society of Japan, 1985, 58, 3436-3443.	2.0	15

#	Article	IF	Citations
145	Aggregation morphology of synthetic peptidic amphiphiles. Thin Solid Films, 1989, 180, 179-183.	0.8	15
146	1H NMR analysis of porphyrin-stoppered rotaxanes: effect of the porphyrin substituents on the macrocycleElectronic supplementary information (ESI) available: chemical shift data. See http://www.rsc.org/suppdata/nj/b4/b403707c/. New Journal of Chemistry, 2004, 28, 870.	1.4	15
147	Measuring the Length Distribution of Self-Assembled Lipid Nanotubes by Orientation Control with a High-Frequency Alternating Current Electric Field in Aqueous Solutions. Analytical Chemistry, 2009, 81, 1459-1464.	3.2	15
148	Electric moulding of dispersed lipid nanotubes into a nanofluidic device. Scientific Reports, 2013, 3, 2165.	1.6	15
149	Asymmetric halogenation and hydrohalogenation of styrene in crystalline cyclodextrin complexes. Journal of Inclusion Phenomena, 1987, 5, 449-458.	0.6	14
150	Effective Shortening in Length of Glycolipid Nanotubes with High Axial Ratios. Chemistry Letters, 2003, 32, 1146-1147.	0.7	14
151	Alignment of Glycolipid Nanotubes on a Planar Glass Substrate Using a Two-Step Microextrusion Technique. Journal of Nanoscience and Nanotechnology, 2006, 6, 1464-1466.	0.9	14
152	Lipid Nanotube Encapsulating Method for Two- and Three-Dimensional Transmission Electron Microscopy Analyses of Cage-Shaped Proteins. Japanese Journal of Applied Physics, 2008, 47, 394-399.	0.8	14
153	Spontaneous Nematic Alignment of a Lipid Nanotube in Aqueous Solutions. Langmuir, 2015, 31, 1150-1154.	1.6	14
154	13C- and 1H-nmr evidence for all-cis peptide bonds in cyclic tetrapeptidecyclo (L-Pro-Sar) 2. Biopolymers, 1983, 22, 617-632.	1.2	13
155	Study of the factors influencing peak asymmetry on chromatography using a molecularly imprinted polymer prepared by the epitope approach. Bioseparation, 2001, 10, 399-407.	0.7	13
156	Detection of complementary hydrogen bond complexes in water by electrospray ionization-Fourier-transform ion cyclotron resonance mass spectrometryElectronic supplementary information (ESI) available: ESI-FTICR MS spectrum of the 1/3 aqueous solution. See http://www.rsc.org/suppdata/cc/b2/b207874k/. Chemical Communications, 2002, , 2658-2659.	2.2	13
157	Synthesis of Alkyl-substituted, Strapped Porphyrin to Prepare Stable Alkyl-chain-assisted Self-assembled Monolayers of Porphyrin Conjugates. Chemistry Letters, 2004, 33, 1418-1419.	0.7	13
158	Elastic precursor of the transformation from glycolipid nanotube to vesicle. Journal of Physics Condensed Matter, 2006, 18, 3089-3096.	0.7	13
159	One-Dimensional Confinement of CdS Nanodots and Subsequent Formation of CdS Nanowires by Using a Glycolipid Nanotube as a Ship-in-Bottle Scaffold. Journal of Physical Chemistry C, 2008, 112, 18412-18416.	1.5	13
160	Lipid Nanotube Encapsulating Method in Low-Energy Scanning Transmission Electron Microscopy Analyses. Japanese Journal of Applied Physics, 2009, 48, 097001.	0.8	13
161	Supramolecular nanofiber formation from commercially available arginine and a bola-type diacetylenic diacid via hydrogelation. Polymer Journal, 2012, 44, 646-650.	1.3	13
162	Higher lung accumulation of intravenously injected organic nanotubes. International Journal of Nanomedicine, 2013, 8, 315.	3.3	13

#	Article	IF	Citations
163	Cross-sectional structures of a molecular monolayer nanotube explored with SAXS: evidence for the parallel orientation of the headgroups in asymmetric bolaamphiphiles. Physical Chemistry Chemical Physics, 2017, 19, 24445-24447.	1.3	13
164	Quantitative analyses of PEGylated phospholipids adsorbed on single walled carbon nanohorns by high resolution magic angle spinning 1H NMR. Carbon, 2016, 101, 213-217.	5.4	12
165	Bioreactors Based on Enzymes Encapsulated in Photoresponsive Transformable Nanotubes and Nanocoils End apped with Magnetic Nanoparticles. Advanced Biology, 2018, 2, 1700214.	3.0	12
166	Hydrophilic Interface-Directed Self-Assembly of Bola-Form Amide into Hollow Spheres. Advanced Materials, 2003, 15, 1417-1420.	11.1	11
167	Synthetic peptidic amphiphile: reduction in length of a helical bilayer assembly due to interaction with a metal cation. Journal of the Chemical Society Chemical Communications, 1990, , 183.	2.0	10
168	Hydrogen-Bond-Assisted Layered Assembly and Hydrocarbon-Chain Kink Defect of a Synthetic 1-Galactosamide Bolaamphiphile. Chemistry Letters, 1997, 26, 267-268.	0.7	10
169	Nanofiber formation from sequence-selective DNA-templated self-assembly of a thymidylic acid-appended bolaamphiphile. Chemical Communications, 2008, , 5770.	2.2	10
170	Multiple conformational equilibria of cyclic octapeptide, cyclo (Lâ€Proâ€Sar)4 in solution. International Journal of Peptide and Protein Research, 1983, 22, 194-203.	0.1	10
171	Ring conformation of cyclic octapeptide cyclo (L â€Proâ€Sar)4 in the crystalline state. International Journal of Peptide and Protein Research, 1983, 22, 231-238.	0.1	10
172	Multiple Conformations and Conformational Change in the Acetonitrile of Cation-binding Cyclic Tetrapeptide, Cyclo[Gly–L-Cys(Bzl(OMe))–Sar–L-Pro]. Bulletin of the Chemical Society of Japan, 1982, 55, 3817-3823.	2.0	9
173	Enhanced Circular Dichroism of Self-Assembled Peptidic Amphiphiles. Chemistry Letters, 1989, 18, 1341-1344.	0.7	9
174	Structure of soluble poly(3-alkylthiophene)s. Synthetic Metals, 1991, 41, 551-554.	2.1	9
175	Improved Synthesis of (4S)-4-[(1S,2R)-1,2-Epoxybut-3-enyl]-2-phenyl-2-oxazoline, a Key Intermediate for Sphingolipids1. Synthetic Communications, 1997, 27, 4255-4264.	1.1	9
176	Title is missing!. Biotechnology Letters, 1998, 20, 1161-1165.	1.1	9
177	Stable spherical hollow particles composed of bola-form amides via non-covalent interactions. Journal of Materials Chemistry, 2004, 14, 3532.	6.7	9
178	3D Manipulation of lipid nanotubes using laser trapped functional gel microbeads. , 2007, , .		9
179	Facile Fabrication and Magnetic Properties of a One-Dimensional Magnetite Peapod in a Lipid Nanotube. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2439-2444.	4.0	9
180	Observing the Kinetic Pathway of Nanotube Formation from Bolaamphiphiles by Time-Resolved Small-Angle X-ray Scattering. Journal of Physical Chemistry B, 2019, 123, 4340-4345.	1.2	9

#	Article	IF	Citations
181	Encapsulation of Albumin in Organic Nanotube Channel: Structural Investigation by Small-Angle X-ray Scattering. ACS Applied Bio Materials, 2019, 2, 1652-1659.	2.3	9
182	Aligning a Single-Lipid Nanotube with Moderate Stiffness. Angewandte Chemie, 2003, 115, 76-78.	1.6	8
183	Selective ion transport and ion extraction by synthetic cyclic octapeptide. International Journal of Peptide and Protein Research, 1986, 27, 344-354.	0.1	8
184	A Simple <i>N</i> -Acyl- <scp>l</scp> -amino Acid Constructed Metal-complexed Organic Nanotube Having an Inner Diameter below 10 nm. Chemistry Letters, 2011, 40, 218-220.	0.7	8
185	Synthesis of glycolipids: dialkyl N-[N-(4-lactonamidobutyl)succinamoyl]l-glutamates. Carbohydrate Research, 1996, 290, 225-232.	1.1	7
186	Confined Sol–Gel Reaction Using a Neutral Glycolipid Nanotube as a Template: Aqueous Fabrication of Titania Rod Structures. Chemistry Letters, 2006, 35, 394-395.	0.7	7
187	Development of massive synthesis method of organic nanotube toward practical use. Synthesiology, 2009, 1, 169-176.	0.2	7
188	Intra- and intermolecular charge-transfer interactions between terminal electron donor and acceptor attached to poly(?-benzyl-L-glutamate) in solution. Biopolymers, 1980, 19, 701-711.	1.2	6
189	Molecular dynamics simulation for the crystal structure of synthetic sugar-based bolaamphiphiles. Computational Materials Science, 1999, 14, 267-276.	1.4	6
190	Sodium chloride-induced self-assembly of microfibers from nanofiber components. Journal of Colloid and Interface Science, 2004, 277, 299-303.	5.0	6
191	Templated Assembly of a Monolayer Consisting of a Coordination Nanobox at Air–Water Interface. Chemistry Letters, 2004, 33, 860-861.	0.7	6
192	Phase behavior and spherical hollow particle formation by dipeptide-based two-headed amphiphiles in a mixed solvent of dimethyl sulfoxide and water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 191-197.	2.3	6
193	Nanoscale to Macroscale Investigation of the Frictional Properties of Physisorbed Layers of Self-Organized Phthalocyanine Derivatives. Tribology Letters, 2008, 31, 9-15.	1.2	6
194	Preparation of pH-sensitive lipid-modified magnetite nanoparticle dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 63-69.	2.3	6
195	Synthesis of model glycolipids having two long alkyl chains. Carbohydrate Research, 1995, 277, C1-C3.	1.1	5
196	Alkyl-Chain-Length Dependence of Frictional Properties of Alkyl-Substituted Phthalocyanines Physisorbed on Graphite Surfaces. Japanese Journal of Applied Physics, 2005, 44, 5403-5408.	0.8	5
197	Conformational Studies of Bis(cyclic tetrapeptide),S,S′-Bis[cyclo(Gly–L-hemiCys–Sar–L-Pro)]. A Proposed Castanet-type Structure in a Dimethyl Sulfoxide Solution. Bulletin of the Chemical Society of Japan, 1982, 55, 3808-3816.	2.0	4
198	Cation binding of bis(cyclic tetrapeptide). 1H n.m.r. and c.d. evidence for conformational fitting of cyclic backbone and covalent CSSC bridge. International Journal of Biological Macromolecules, 1983, 5, 179-185.	3.6	4

#	Article	IF	CITATIONS
199	Precision Polymerization and Polymers II. Noncovalent Synthesis of Supramolecular Polymer Architectures from Sugar- and Peptide-Based Bolaamphiphiles Kobunshi Ronbunshu, 1997, 54, 815-828.	0.2	4
200	Buffers to suppress sodium dodecyl sulfate adsorption to polyethylene oxide for protein separation on capillary polymer electrophoresis. Electrophoresis, 2011, 32, 448-454.	1.3	4
201	Solid-state polymerization of 1,4-bis(3-acetylaminophenyl)-1,3-butadiyne under high pressure1. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 177-184.	0.7	3
202	Direct Sol-Gel Replication of the Self-assembled Nanostructure Modified with H-bond Functionalities. Chemistry Letters, 2002, 31, 1246-1247.	0.7	3
203	Self-Assembly and Subsequent Accumulation of Lipid Nanotubes at Oil/Water Interfaces. Analytical Sciences, 2004, 20, 1549-1552.	0.8	3
204	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. ChemInform, 2005, 36, no.	0.1	3
205	Nanopipette with a lipid nanotube as nanochannel. , 2007, , .		3
206	Gel–Flocculation Transition of a Supramolecular Hydrogel Induced by Depletion Effect of Polymers. Chemistry Letters, 2009, 38, 606-607.	0.7	3
207	3D Manipulation of Lipid Nanotubes with Functional Gel Microbeads. Journal of Robotics and Mechatronics, 2007, 19, 198-204.	0.5	3
208	Local conformations of ends of ?-helical poly[Glu(OBzl)] studied by circular dichroism of terminal chromophores. Biopolymers, 1980, 19, 1271-1279.	1.2	2
209	尿欰症代è¬ç"£ç‰© (主ã«å°¿ç) é™åŽ»ã®ãŸã¸ã«é—‹ç™ºã⊷ãŸè;¨é¢åŒ—å┤処ç‡é…¸åŒ—デンプンã₽	®è ª;è£ ⁄2.	Kob 2 nshi Ronb
210	è;¨é¢åŒ–å¦å‡¦ç†é…¸åŒ–ãf‡ãf³ãf—ãf³ã«ã,^ã,⟨尿毒症代è¬ç"£ç‰© (主ã«å°¿çĴã®é™ãŽ». Kobunshi Roi	nbu o s z u, 1	1982, 39, 637-
211	Asymmetric Decarboxylation of 2-Ethyl-2-(4-Methylphenyl)-Propane-1,3-Dioic Acid in Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals, 1983, 99, 255-266.	0.9	2
212	lon transport, ion extraction, and ion binding by synthetic cyclic octapeptide. Journal of Inclusion Phenomena, 1987, 5, 103-108.	0.6	2
213	Synthesis of glycolipids containing disaccharides and two longer alkyl chains and their applications as enzyme modifiers. Carbohydrate Research, 1996, 292, 47-59.	1.1	2
214	Non-Covalent Synthesis of Twisted Organic Fibers by Self-Assembling of Sugar-Based Bolaamphiphiles in Water. Molecular Crystals and Liquid Crystals, 1997, 295, 197-200.	0.3	2
215	Ultrastable Steroidal Nanotube Formed in Organic Solvents. Chemistry Letters, 2005, 34, 532-533.	0.7	2
216	Liquid-Phase Nanospace Science of Bionanotubes Consisting of Synthetic Lipid Membranes. Kobunshi Ronbunshu, 2010, 67, 560-573.	0.2	2

#	Article	IF	CITATIONS
217	Polymorphism of Model Glycosphingolipids Evidenced by Calorimetric and Polarizing Microscopic Study. Chemistry Letters, 1993, 22, 567-570.	0.7	1
218	MOLECULE-UP FABRICATION AND MANIPULATION OF LIPID NANOTUBES. International Journal of Nanoscience, 2002, 01, 465-469.	0.4	1
219	Stability of the Self-Organized Two-Dimensional Structures of Porphyrin and Phthalocyanine Derivatives on Graphite for the Directed Arrangement of Rotaxanes. AIP Conference Proceedings, 2003, , .	0.3	1
220	Supramolecular Nanotube Hosts for Encapsulation of 10-nm-Scale Objects. Materials Research Society Symposia Proceedings, 2006, 922, 1.	0.1	1
221	Spout from Organic Nanotube Nanopipette by Electric Migration Forces. , 2008, , .		1
222	Self-Assembled Organic Nanotubes and Their Applications in Nano-Bio Fields. , 2011, , 31-74.		1
223	General Remarks of Soft-Matter Nanotubes. Nanostructure Science and Technology, 2021, , 1-58.	0.1	1
224	Polymer Objects: Towards New Polymer Architectures. Springer Series in Materials Science, 1999, , 53-70.	0.4	1
225	Chemisorbent for medical use - "Dialdehydestarch"-urease conjugate for removal of urea as ammonia Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1985, 1985, 1278-1284.	0.1	0
226	SEM analysis of surface-treated dialdehydestarch. Journal of Biomedical Materials Research Part B, 1986, 20, 247-259.	3.0	0
227	Formation of Complementary and Cooperative Hydrogen-Bonding Networks of Sugar-Based Bolaamphiphiles in Water. Molecular Crystals and Liquid Crystals, 1997, 295, 201-204.	0.3	O
228	Visualized Polymers. Patterns Formed by Polymeric Systems. I. Observation on Fine Morphology of Organic High-Axial-Ratio Microstructures Kobunshi Ronbunshu, 1999, 56, 575-582.	0.2	0
229	Bottom-up Synthesis and Morphological Control of High-Axial-Ratio Nanostructures Through Molecular Self-Assembly. ChemInform, 2003, 34, no.	0.1	О
230	Synthesis of Alkyl-Substituted, Strapped Porphyrin to Prepare Stable Alkyl-Chain-Assisted Self-Assembled Monolayers of Porphyrin Conjugates ChemInform, 2005, 36, no.	0.1	0
231	Fabrication of Inorganic Tubular Structures Using a Lipid Nanotube as a Template in Aqueous Solutions. Materials Research Society Symposia Proceedings, 2006, 922, 1.	0.1	О
232	Spontaneous Self-Assembly, Functionalization, and Meso-Scale Host-Guest Science of Organic Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1061, 1.	0.1	O
233	Identification of Migration Forces in Organic Nanotube Nanopipette. , 2008, , .		0
234	Self-assembled organic nanotubes: Architectures and nano-bio functions. , 2010, , .		0

#	Article	IF	CITATIONS
235	Bottomâ€up Synthesis and Structural Properties of Selfâ€Assembled highâ€axialâ€ratio Nanostructures. ChemInform, 2002, 33, 276-276.	0.1	О
236	One-dimensional hollow cylinder and three-dimensional meshworks of supramolecular nanotube hydrogels for fixation of proteins. , 2010, , .		0
237	Lipid Nanotubes. Nanostructure Science and Technology, 2021, , 59-95.	0.1	O
238	Peptide-Based Nanotubes. Nanostructure Science and Technology, 2021, , 175-202.	0.1	0
239	Bolaamphiphile-Based Nanotubes. Nanostructure Science and Technology, 2021, , 97-149.	0.1	O
240	Rigid–Flexible Block Molecule-Based Nanotubes. Nanostructure Science and Technology, 2021, , 291-352.	0.1	0
241	Protein-Based Nanotubes. Nanostructure Science and Technology, 2021, , 241-263.	0.1	O
242	å^†å至己集å•ã«ãŠã•ã,‹ãƒŠãƒŽãƒãƒ¥ãƒ¼ãƒ−ã®æ§‹é€å^¶å¾¡. Seikei-Kakou, 2004, 16, 749-753.	0.0	0
243	Ion Transport, Ion Extraction, and Ion Binding by Synthetic Cyclic Octapeptide. , 1987, , 103-108.		О