Peter BÃ,ggild

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4474720/publications.pdf

Version: 2024-02-01

213 papers

9,325 citations

43973 48 h-index 90 g-index

216 all docs

216 docs citations

216 times ranked

13123 citing authors

#	Article	IF	CITATIONS
1	Bottomâ€Upâ€Etchingâ€Mediated Synthesis of Largeâ€Scale Pure Monolayer Graphene on Cyclicâ€Polishingâ€Annealed Cu(111). Advanced Materials, 2022, 34, e2108608.	11.1	16
2	Bottomâ€Upâ€Etchingâ€Mediated Synthesis of Largeâ€Scale Pure Monolayer Graphene on Cyclicâ€Polishingâ€Annealed Cu(111) (Adv. Mater. 8/2022). Advanced Materials, 2022, 34, .	11.1	0
3	Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly. ACS Omega, 2022, 7, 22626-22632.	1.6	5
4	Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Science Advances, $2021, 7, .$	4.7	51
5	Universal Non-Volatile Resistive Switching Behavior in 2D Metal Dichalcogenides Featuring Unique Conductive-Point Random Access Memory Effect. , 2021, , .		2
6	Super-Resolution Nanolithography of Two-Dimensional Materials by Anisotropic Etching. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41886-41894.	4.0	16
7	Unraveling the electronic properties of graphene with substitutional oxygen. 2D Materials, 2021, 8, 045035.	2.0	9
8	Nonlinear conductivity response of graphene on thin polymeric film detected by reflection-mode air-plasma THz-TDS. , 2021, , .		0
9	Long-term stability and tree-ring oxidation of WSe ₂ using phase-contrast AFM. Nanoscale, 2021, 13, 19238-19246.	2.8	3
10	Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Materials, 2020, 7, 035009.	2.0	23
11	Wafer-scale graphene quality assessment using micro four-point probe mapping. Nanotechnology, 2020, 31, 225709.	1.3	7
12	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
13	Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure. Nanotechnology, 2020, 31, 485603.	1.3	5
14	Reference-free THz-TDS conductivity analysis of thin conducting films. Optics Express, 2020, 28, 28819.	1.7	19
15	A universal approach for the synthesis of two-dimensional binary compounds. Nature Communications, 2019, 10, 2957.	5.8	93
16	Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene. Small, 2019, 15, e1904906.	5.2	61
17	Atomic Layer Deposition Aluminaâ€Mediated Graphene Transfer for Reduced Process Contamination. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900424.	1.2	4
18	Gate electrostatics and quantum capacitance in ballistic graphene devices. Physical Review B, 2019, 99, .	1.1	4

#	Article	IF	CITATIONS
19	Electrostatics of metal–graphene interfaces: sharp p–n junctions for electron-optical applications. Nanoscale, 2019, 11, 10273-10281.	2.8	15
20	Do-lt-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chemistry of Materials, 2019, 31, 2328-2336.	3.2	71
21	Single-Crystalline Gold Nanodisks on WS ₂ Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics, 2019, 6, 994-1001.	3.2	80
22	Non-contact mobility measurements of graphene on silicon carbide. Microelectronic Engineering, 2019, 212, 9-12.	1.1	8
23	Oxidation of Suspended Graphene: Etch Dynamics and Stability Beyond 1000 °C. ACS Nano, 2019, 13, 2281-2288.	7.3	10
24	Graphene–Si CMOS oscillators. Nanoscale, 2019, 11, 3619-3625.	2.8	6
25	Low-temperature synthesis of a graphene-based, corrosion-inhibiting coating on an industrial grade alloy. Corrosion Science, 2019, 152, 1-9.	3.0	14
26	Challenges for continuous graphene as a corrosion barrier. 2D Materials, 2019, 6, 022002.	2.0	33
27	Lithographic band structure engineering of graphene. Nature Nanotechnology, 2019, 14, 340-346.	15.6	82
28	Graphene-Subgrain-Defined Oxidation of Copper. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48518-48524.	4.0	13
29	Quantitative optical mapping of two-dimensional materials. Scientific Reports, 2018, 8, 6381.	1.6	29
30	Complete long-term corrosion protection with chemical vapor deposited graphene. Carbon, 2018, 132, 78-84.	5.4	89
31	Conductance quantization suppression in the quantum Hall regime. Nature Communications, 2018, 9, 659.	5.8	25
32	High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Applied Physics Letters, 2018, 112, .	1.5	8
33	The war on fake graphene. Nature, 2018, 562, 502-503.	13.7	55
34	Large-scale tight-binding simulations of quantum transport in ballistic graphene. Journal of Physics Condensed Matter, 2018, 30, 364001.	0.7	13
35	Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Optics Express, 2018, 26, 17748.	1.7	29
36	Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Optics Express, 2018, 26, 9220.	1.7	36

#	Article	IF	CITATIONS
37	A Graphene-Edge Ferroelectric Molecular Switch. Nano Letters, 2018, 18, 4675-4683.	4.5	21
38	Electrical Homogeneity Mapping of Epitaxial Graphene on Silicon Carbide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31641-31647.	4.0	20
39	Real-time oxide evolution of copper protected by graphene and boron nitride barriers. Scientific Reports, 2017, 7, 39770.	1.6	55
40	Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials. Carbon, 2017, 117, 75-81.	5.4	33
41	Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS ₂ under an Electron Beam: Insights from First-Principles Calculations. Journal of Physical Chemistry Letters, 2017, 8, 3061-3067.	2.1	81
42	A two-dimensional Dirac fermion microscope. Nature Communications, 2017, 8, 15783.	5.8	72
43	Graphene antidot lattice transport measurements. International Journal of Nanotechnology, 2017, 14, 226.	0.1	13
44	Reversible hysteresis inversion in MoS2 field effect transistors. Npj 2D Materials and Applications, 2017, 1 , .	3.9	112
45	Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene. 2D Materials, 2017, 4, 045017.	2.0	17
46	Mapping the electrical properties of large-area graphene. 2D Materials, 2017, 4, 042003.	2.0	113
47	Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy. Scientific Reports, 2017, 7, 6183.	1.6	6
48	Batch fabrication of nanopatterned graphene devices via nanoimprint lithography. Applied Physics Letters, 2017, 111, .	1.5	22
49	Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements. Nano Research, 2017, 10, 3596-3605.	5.8	31
50	Suppression of intrinsic roughness in encapsulated graphene. Physical Review B, 2017, 96, .	1.1	30
51	Self-assembly of ordered graphene nanodot arrays. Nature Communications, 2017, 8, 47.	5.8	25
52	Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction. Optics Express, 2017, 25, 2725.	1.7	32
53	Timing jitter correction for THz-TDS measurements of graphene. , 2016, , .		0
54	The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7, 11894.	5.8	446

#	Article	IF	CITATIONS
55	Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy. International Journal of Nanotechnology, 2016, 13, 591.	0.1	13
56	Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Applied Materials & Catalyst Interfaces, 2016, 8, 33072-33082.	4.0	40
57	Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene. Chemistry of Materials, 2016, 28, 3789-3795.	3.2	44
58	All-graphene edge contacts: Electrical resistance of graphene T-junctions. Carbon, 2016, 101, 101-106.	5 . 4	10
59	Failure of multi-layer graphene coatings in acidic media. RSC Advances, 2016, 6, 21497-21502.	1.7	14
60	Nanogrippers. , 2016, , 2393-2414.		0
61	Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Optics Express, 2015, 23, 30721.	1.7	50
62	High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography. RSC Advances, 2015, 5, 66711-66717.	1.7	22
63	Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1). Journal Physics D: Applied Physics, 2015, 48, 115306.	1.3	23
64	Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. Journal of Power Sources, 2015, 293, 846-851.	4.0	70
65	Wafer-scale characterization of carrier dynamics in graphene. , 2015, , .		0
66	Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials, 2015, 2, 045003.	2.0	29
67	Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene. Scientific Reports, 2015, 5, 7609.	1.6	41
68	Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85, 397-405.	5.4	41
69	Defect/oxygen assisted direct write technique for nanopatterning graphene. Nanoscale, 2015, 7, 6271-6277.	2.8	11
70	Transfer of Direct and Moiré Patterns by Reactive Ion Etching Through Ex Situ Fabricated Nanoporous Polymer Masks. Langmuir, 2015, 31, 6245-6252.	1.6	2
71	Graphene mobility mapping. Scientific Reports, 2015, 5, 12305.	1.6	89
72	Selective Electroless Silver Deposition on Graphene Edges. Journal of the Electrochemical Society, 2015, 162, D213-D217.	1.3	7

#	Article	IF	CITATIONS
73	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
74	Nanogrippers. , 2015, , 1-23.		0
75	Directed self-assembled crystalline oligomer domains on graphene and graphite. Nanotechnology, 2014, 25, 035602.	1.3	14
76	Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials. Physical Review B, 2014, 90, .	1.1	9
77	Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1, 035005.	2.0	73
78	Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials. Applied Physics Letters, 2014, 105, .	1.5	13
79	Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography. Nano Letters, 2014, 14, 2907-2913.	4.5	111
80	Pattern recognition approach to quantify the atomic structure of graphene. Carbon, 2014, 74, 363-366.	5.4	4
81	Graphene Edges Dictate the Morphology of Nanoparticles during Catalytic Channeling. Journal of Physical Chemistry C, 2014, 118, 4296-4302.	1.5	29
82	Electrically Continuous Graphene from Single Crystal Copper Verified by Terahertz Conductance Spectroscopy and Micro Four-Point Probe. Nano Letters, 2014, 14, 6348-6355.	4.5	74
83	Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Research, 2014, 7, 743-754.	5.8	91
84	Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping. Microelectronic Engineering, 2014, 121, 113-117.	1.1	32
85	Topology optimization of robust superhydrophobic surfaces. Soft Matter, 2013, 9, 2234.	1.2	14
86	Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling. Nanotechnology, 2013, 24, 465701.	1.3	17
87	Stepwise Reduction of Immobilized Monolayer Graphene Oxides. Chemistry of Materials, 2013, 25, 4839-4848.	3.2	12
88	Design of a micro-cartridge system for the robotic assembly of exchangeable AFM-probe tips. , 2013, , .		4
89	Out-of-plane bending based on SiN-ion-irradiation and bilayer structures for easy access for micromanipulation. Microelectronic Engineering, 2013, 110, 398-402.	1.1	3
90	Black silicon maskless templates for carbon nanotube forests. Microelectronic Engineering, 2013, 104, 110-113.	1.1	4

#	Article	IF	CITATIONS
91	Effective surface conductivity approach for graphene metamaterials based terahertz devices., 2013,,.		1
92	Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels. Journal of Applied Physics, 2013, 114, 114303.	1.1	2
93	Electronic and transport properties of kinked graphene. Beilstein Journal of Nanotechnology, 2013, 4, 103-110.	1.5	22
94	3D mechanical measurements with an atomic force microscope on 1D structures. Review of Scientific Instruments, 2012, 83, 023704.	0.6	10
95	Graphene Oxide as a Monoatomic Blocking Layer. ACS Nano, 2012, 6, 8022-8029.	7.3	16
96	Nanomedicine. , 2012, , 1644-1644.		0
97	Quantitative mapping of large area graphene conductance. , 2012, , .		1
98	Graphene Conductance Uniformity Mapping. Nano Letters, 2012, 12, 5074-5081.	4.5	152
99	Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.		0
100	Parametric Optimization of Inverse Trapezoid Oleophobic Surfaces. Langmuir, 2012, 28, 17545-17551.	1.6	19
101	In Situ TEM Creation and Electrical Characterization of Nanowire Devices. Nano Letters, 2012, 12, 2965-2970.	4.5	34
102	Nano-FET., 2012, , 1543-1543.		0
103	Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. Journal of Applied Physics, $2012,111,$	1.1	59
104	In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating. Journal of Microelectromechanical Systems, 2011, 20, 1074-1080.	1.7	1
105	Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene. Nano Letters, 2011, 11, 2689-2692.	4.5	77
106	Fast and direct measurements of the electrical properties of graphene using micro four-point probes. Nanotechnology, 2011, 22, 445702.	1.3	37
107	Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography. Lab on A Chip, 2011, 11, 2116.	3.1	68
108	High Throughput Nanofabrication of Silicon Nanowire and Carbon Nanotube Tips on AFM Probes by Stencil-Deposited Catalysts. Nano Letters, 2011, 11, 1568-1574.	4.5	47

#	Article	IF	Citations
109	Direct electrospinning of Ag/polyvinylpyrrolidone nanocables. Nanoscale, 2011, 3, 4966.	2.8	73
110	Nanomanipulation of 2 inch wafer fabrication of vertically aligned carbon nanotube arrays by nanoimprint lithography. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2352-2356.	0.8	2
111	Optimization of FIB milling for rapid NEMS prototyping. Microelectronic Engineering, 2011, 88, 2671-2674.	1.1	4
112	A graphite nanoeraser. Nanotechnology, 2011, 22, 265706.	1.3	38
113	Vertically aligned CNT growth on a microfabricated silicon heater with integrated temperature controlâ€"determination of the activation energy from a continuous thermal gradient. Journal of Micromechanics and Microengineering, 2011, 21, 015004.	1.5	12
114	Micro-cantilevers for non-destructive characterization of nanograss uniformity., 2011, , .		2
115	Atomic Force Microscopy for Liquid Applications. , 2011, , 29-56.		2
116	Microfabricated systems for electron microscopy of nanoscale processes: In-situ TEM creation of Si nanowire devices and in-situ SEM electrochemistry. Microscopy and Microanalysis, 2010, 16, 322-323.	0.2	1
117	Graphene electrodes for n-type organic field-effect transistors. Microelectronic Engineering, 2010, 87, 1120-1122.	1.1	7
118	Measurement of Local Siâ€Nanowire Growth Kinetics Using In situ Transmission Electron Microscopy of Heated Cantilevers. Small, 2010, 6, 2058-2064.	5.2	27
119	Electrical characterization of InGaAs ultra-shallow junctions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1C41-C1C47.	0.6	6
120	Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown SWCNT bundles. , 2010, , .		3
121	Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 21-26.	0.6	12
122	Sensitivity study of micro four-point probe measurements on small samples. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1C34-C1C40.	0.6	17
123	Submicron organic nanofiber devices with different anode-cathode materials: A simple approach. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 617-622.	0.6	1
124	Review of electrical characterization of ultra-shallow junctions with micro four-point probes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1C27-C1C33.	0.6	40
125	Manipulation and <i>in situ </i> transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. Journal of Micromechanics and Microengineering, 2010, 20, 035009.	1.5	22
126	Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures. Journal of Physical Chemistry C, 2010, 114, 2936-2940.	1.5	105

#	Article	IF	Citations
127	Customizablein situTEM devices fabricated in freestanding membranes by focused ion beam milling. Nanotechnology, 2010, 21, 405304.	1.3	12
128	Semiconducting Ill–V nanowires with nanogaps for molecular junctions: DFT transport simulations. Nanotechnology, 2009, 20, 465401.	1.3	1
129	Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation. IEEE Nanotechnology Magazine, 2009, 8, 76-85.	1.1	42
130	Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications. Nanotechnology, 2009, 20, 095503.	1.3	25
131	Nanobits: customizable scanning probe tips. Nanotechnology, 2009, 20, 395703.	1.3	27
132	Fundamental size limitations of micro four-point probes. Microelectronic Engineering, 2009, 86, 987-990.	1.1	14
133	Correction to "Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation". IEEE Nanotechnology Magazine, 2009, 8, 659-659.	1.1	0
134	Measuring the Temperature of Topology Optimized Electrothermal Microgrippers Using Raman Spectroscopy. , 2009, , .		0
135	Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope. Journal of Micro-Nano Mechatronics, 2008, 4, 27-36.	1.0	51
136	Epitaxial Integration of Nanowires in Microsystems by Local Micrometerâ€Scale Vaporâ€Phase Epitaxy. Small, 2008, 4, 1741-1746.	5.2	27
137	Selective etching of Ill–V nanowires for molecular junctions. Microelectronic Engineering, 2008, 85, 1179-1181.	1.1	5
138	Static contact micro four-point probes with <11nm positioning repeatability. Microelectronic Engineering, 2008, 85, 1092-1095.	1.1	25
139	Topology optimized electrothermal polysilicon microgrippers. Microelectronic Engineering, 2008, 85, 1096-1099.	1.1	34
140	The conductivity of Bi(111) investigated with nanoscale four point probes. Journal of Applied Physics, 2008, 104, 053717.	1.1	32
141	Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology, 2008, 19, 495503.	1.3	58
142	Electrothermal microgrippers for pick-and-place operations. Microelectronic Engineering, 2008, 85, 1128-1130.	1.1	36
143	On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation. Soft Matter, 2008, 4, 392.	1.2	14
144	A complementary metal-oxide-semiconductor compatible monocantilever 12 -point probe for conductivity measurements on the nanoscale. Applied Physics Letters, $2008,93,.$	1.5	18

#	Article	IF	Citations
145	Topology Optimized Microgrippers for Nanomanipulation of Carbon Nanotubes., 2008,,.		O
146	Focused Ion Beam (FIB) Modification of Topology Optimized Polysilicon Microgrippers., 2008,,.		1
147	Investigation of Parameters Controlling the Dielectrophoretic Assembly of Carbon Nanotubes on Microelectrodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 1973-1978.	0.9	9
148	Device-Oriented Studies on Electrical, Optical and Mechanical Properties of Individual Organic Nanofibers., 2008,, 301-324.		0
149	Route to batch-compatible fabrication of nanotweezers by guided self-assembly. , 2007, , .		0
150	A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology, 2007, 18, 345501.	1.3	62
151	Flexible SiO ₂ cantilevers for torsional self-aligning micro scale four-point probes. Journal of Micromechanics and Microengineering, 2007, 17, 1910-1915.	1.5	1
152	NanoHand: micro/nano system for automatic handling of nano-objects. Proceedings of SPIE, 2007, , .	0.8	2
153	Wafer scale integration of catalyst dots into nonplanar microsystems. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2007, 6, 043014.	1.0	0
154	Charge Injection and Transport in Organic Nanofibers. Journal of Physics: Conference Series, 2007, 61, 565-569.	0.3	3
155	Expanding the Nano-Toolbox for Electron Microscopy - Combining In-situ Nanomanipulation and Electron Beam Deposition. Microscopy and Microanalysis, 2007, 13, .	0.2	0
156	Temperature response of carbon nanotube networks. Journal of Physics: Conference Series, 2007, 61, 247-251.	0.3	9
157	Nanorobotic manipulation setup for pick-and-place handling and nondestructive characterization of carbon nanotubes., 2007,,.		30
158	Microgrippers: a case study for batch-compatible integration of MEMS with nanostructures. Nanotechnology, 2007, 18, 375501.	1.3	12
159	Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy, 2007, 108, 52-57.	0.8	66
160	Electrical conductivity of organic single-nanofiber devices with different contact materials. Organic Electronics, 2007, 8, 540-544.	1.4	16
161	Batch fabrication of nanotubes suspended between microelectrodes. Microelectronic Engineering, 2007, 84, 1431-1435.	1.1	1
162	Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air. Nano Letters, 2006, 6, 1663-1668.	4.5	66

#	Article	IF	CITATIONS
163	Optically driven microtools fabricated by UV lithography and RIE. , 2006, 6131, 77.		O
164	MICROFABRICATED TOOLS FOR PICK-AND-PLACE OF NANOSCALE COMPONENTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 120-126.	0.4	2
165	Mechanical Properties of Organic Nanofibers. Small, 2006, 2, 660-666.	5.2	24
166	Waferscale assembly of Field-Aligned nanotube Networks (FANs). Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1088-1093.	0.8	8
167	Micromanipulation of organic nanofibers for blue light emitting microstructures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1459-1463.	0.8	8
168	Integrating nanotubes into microsystems with electron beam lithography and in situ catalytically activated growth. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1094-1099.	0.8	5
169	Integration of carbon nanotubes with controllable inclination angle into microsystems. Carbon, 2006, 44, 3030-3036.	5.4	4
170	Electrical properties of a single p-hexaphenylene nanofiber. Thin Solid Films, 2006, 515, 827-830.	0.8	22
171	High resolution 100kV electron beam lithography in SU-8. Microelectronic Engineering, 2006, 83, 1609-1612.	1.1	83
172	Versatile Method for Manipulating and Contacting Nanowires. Journal of Nanoscience and Nanotechnology, 2006, 6, 1995-1999.	0.9	8
173	Carbon nanotube forests: a non-stick workbench for nanomanipulation. Nanotechnology, 2006, 17, 4917-4922.	1.3	14
174	Comparison of high resolution negative electron beam resists. Journal of Vacuum Science & Technology B, 2006, 24, 1776.	1.3	32
175	Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology, 2006, 17, 2434-2441.	1.3	127
176	A simple electron-beam lithography system. Ultramicroscopy, 2005, 102, 215-219.	0.8	9
177	Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain. Ultramicroscopy, 2005, 105, 209-214.	0.8	22
178	Optical detection of ion diffusion in electrochromic poly(3,4-ethylenedioxy)thiophene film using microcantilever electrodes. Thin Solid Films, 2005, 484, 334-340.	0.8	2
179	Nanoscale silicon structures by using carbon nanotubes as reactive ion etch masks. Nanotechnology, 2005, 16, 750-753.	1.3	13
180	Functionalisation of Microfluidic Channels with In Situ Grown Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2005, 872, $1.$	0.1	0

#	Article	lF	CITATIONS
181	Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. Optics Express, 2005, 13, 6899.	1.7	112
182	Frequency dependence of the structure and electrical behaviour of carbon nanotube networks assembled by dielectrophoresis. Nanotechnology, 2005, 16, 759-763.	1.3	47
183	Direct Measurement of Resistance of Multiwalled Carbon Nanotubes Using Micro Four-Point Probes. Sensor Letters, 2005, 3, 300-303.	0.4	41
184	Towards Pick-and-Place Assembly of Nanostructures. Journal of Nanoscience and Nanotechnology, 2004, 4, 279-282.	0.9	52
185	Constructing, connecting and soldering nanostructures by environmental electron beam deposition. Nanotechnology, 2004, 15, 1047-1053.	1.3	74
186	Microcantilever equipped with nanowire template electrodes for multiprobe measurement on fragile nanostructures. Journal of Applied Physics, 2004, 96, 2895-2900.	1.1	23
187	Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology, 2004, 15, 1095-1102.	1.3	216
188	An approach to a multi-walled carbon nanotube based mass sensor. Microelectronic Engineering, 2004, 73-74, 670-674.	1.1	34
189	Micro-four-point-probe characterization of nanowires fabricated using the nanostencil technique. Nanotechnology, 2004, 15, 1363-1367.	1.3	27
190	Polymer Cantilever Platform for Dielectrophoretic Assembly of Carbon Nanotubes. Sensor Letters, 2004, 2, 117-120.	0.4	4
191	Solid Gold Nanostructures Fabricated by Electron Beam Deposition. Nano Letters, 2003, 3, 1499-1503.	4.5	82
192	Soldering of Nanotubes onto Microelectrodes. Nano Letters, 2003, 3, 47-49.	4.5	110
193	Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems. Review of Scientific Instruments, 2003, 74, 3701-3708.	0.6	27
194	ELECTRICAL CONDUCTION THROUGH SURFACE SUPERSTRUCTURES MEASURED BY MICROSCOPIC FOUR-POINT PROBES. Surface Review and Letters, 2003, 10, 963-980.	0.5	80
195	Soldering of Carbon Nanotube Bridges using Electron Beam Deposited Gold. Materials Research Society Symposia Proceedings, 2003, 772, 481.	0.1	1
196	Direct measurement of surface-state conductance by microscopic four-point probe method. Journal of Physics Condensed Matter, 2002, 14, 8379-8392.	0.7	49
197	Scanning microscopic four-point conductivity probes. Sensors and Actuators A: Physical, 2002, 96, 53-58.	2.0	87
198	Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology, 2001, 12, 331-335.	1.3	103

#	Article	IF	Citations
199	Direct Measurement of the Microscale Conductivity of Conjugated Polymer Monolayers. Advanced Materials, 2000, 12, 947-950.	11.1	39
200	MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS. Surface Review and Letters, 2000, 07, 533-537.	0.5	34
201	Surface-State Bands on Silicon –Si(111)-\$sqrt{3}imessqrt{3}\$-Ag Surface Superstructure–. Japanese Journal of Applied Physics, 2000, 39, 3815-3822.	0.8	55
202	Scanning nanoscale multiprobes for conductivity measurements. Review of Scientific Instruments, 2000, 71, 2781-2783.	0.6	52
203	Magnetic focusing in triangular electron billiards. Physical Review B, 1999, 59, 13067-13072.	1.1	5
204	Periodic magnetoconductance fluctuations in triangular quantum dots in the absence of selective probing. Physical Review B, 1998, 57, 15408-15415.	1.1	24
205	Nonlinear current-voltage relationship in the quantum hall effect. Physica Scripta, 1997, T69, 124-127.	1.2	1
206	Classical electron orbits inside a real and a simulated 4-contact quantum dot. European Physical Journal D, 1996, 46, 2299-2300.	0.4	0
207	Electronic Shells in Large Quantum Dots. , 1996, , 89-110.		3
208	Effects of small-angle scattering on Weiss oscillations in a GaAs lateral superlattice. Physical Review B, 1995, 51, 7333-7336.	1.1	15
209	Nonlinear current-voltage characteristics at quantum Hall resistance minima. Physical Review B, 1994, 50, 1957-1960.	1.1	37
210	Size dependent non-ohmic behaviour at a quantum hall plateau. Physica B: Condensed Matter, 1994, 194-196, 1133-1134.	1.3	0
211	Customizable nanotweezers for manipulation of free-standing nanostructures., 0,,.		6
212	Nanoscale soldering of positioned carbon nanotubes using highly conductive electron beam induced gold deposition. , 0 , , .		5
213	Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Materials, 0, , .	2.0	11