

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4473811/publications.pdf Version: 2024-02-01

		61857	69108
211	7,633	43	77
papers	citations	h-index	g-index
215	215	215	5106
all docs	docs citations	times ranked	citing authors

ΟιλΝΟΙΙ

#	Article	IF	CITATIONS
1	Catalytic fast pyrolysis of walnut shell with K/AC catalyst for the production of phenolic-rich bio-oil. Biomass Conversion and Biorefinery, 2022, 12, 2451-2462.	2.9	8
2	Effects of radiation reabsorption on laminar NH3/H2/air flames. Combustion and Flame, 2022, 235, 111699.	2.8	23
3	Intrinsic mechanism insight of the interaction between lead species and the Vanadium-based catalysts based on First-principles investigation. Journal of Colloid and Interface Science, 2022, 607, 1362-1372.	5.0	8
4	Steam reforming of toluene as a tar model compound with modified nickel-based catalyst. Frontiers in Energy, 2022, 16, 492-501.	1.2	5
5	Effects of sulfation on the ash fusibility and minerals evolution of corn straw during oxy-fuel combustion. Fuel, 2022, 309, 122140.	3.4	4
6	Mechanism insights into CO oxidation on a low-cost N doped pyrite: A molecular simulation study. Applied Surface Science, 2022, 575, 151657.	3.1	0
7	Effects of radiation reabsorption on the laminar burning velocity of methane/air and methane/hydrogen/air flames at elevated pressures. Fuel, 2022, 311, 122586.	3.4	15
8	Role of glycosidic bond in initial cellulose pyrolysis: Investigation by machine learning simulation. Applications in Energy and Combustion Science, 2022, 9, 100055.	0.9	2
9	Green and Moderate Activation of Coal Fly Ash and Its Application in Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 2582-2592.	4.6	21
10	A sustainable strategy for the production of 1,4:3,6-dianhydro-α-d-glucopyranose through oxalic acid-assisted fast pyrolysis of cellulose. Chemical Engineering Journal, 2022, 436, 135200.	6.6	17
11	Catalytic Transfer Hydrogenation of 5â€Hydroxymethylfurfural with Primary Alcohols over Skeletal CuZnAl Catalysts. ChemSusChem, 2022, 15, .	3.6	4
12	Mechanism insights into CO oxidation over transition metal modified V2O5/TiO2 catalysts: A theoretical study. Chemosphere, 2022, 297, 134168.	4.2	9
13	Valorization of lignin into phenolic compounds via fast pyrolysis: Impact of lignin structure. Fuel, 2022, 319, 123758.	3.4	42
14	Fast pyrolysis of bagasse catalyzed by mixed alkaline-earth metal oxides for the selective production of 4-vinylphenol. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105531.	2.6	10
15	On the measurement of flame temperature and emissivity based on multispectral imaging technique. Measurement: Journal of the International Measurement Confederation, 2022, 196, 111272.	2.5	10
16	The oxalic acid-assisted fast pyrolysis of biomass for the sustainable production of furfural. Fuel, 2022, 322, 124279.	3.4	11
17	Effects of radiation reabsorption on the laminar flame speed and NO emission during aviation kerosene combustion at elevated pressures. Fuel, 2022, 324, 124545.	3.4	5
18	Enhanced production of levoglucosenone from pretreatment assisted catalytic pyrolysis of waste paper. Journal of Analytical and Applied Pyrolysis, 2022, 165, 105567.	2.6	9

Qiang Lu

#	Article	IF	CITATIONS
19	9,10-dihyroanthrancene assisted catalytic pyrolysis of bagasse over N-doped activated carbon to enhance 4-ethyl phenol production. Journal of Analytical and Applied Pyrolysis, 2022, 165, 105572.	2.6	4
20	Effect of temperature on the interactions between cellulose and lignin via molecular dynamics simulations. Cellulose, 2022, 29, 6565-6578.	2.4	3
21	Catalytic Steam Reforming of Benzene as a Bio-tar Model Compound over Ni–Fe/TiO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 8930-8939.	3.2	8
22	Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios. Fuel, 2022, 327, 125176.	3.4	15
23	Direct catalytic decomposition of N2O over bismuth modified NiO catalysts. Journal of Hazardous Materials, 2021, 401, 123334.	6.5	38
24	Migration and transformation of lead species over CaO surface in municipal solid waste incineration fly Ash: A DFT study. Waste Management, 2021, 120, 59-67.	3.7	34
25	Effect of WO3 and MoO3 doping on the interaction mechanism between arsenic oxide and V2O5-based SCR catalyst: A theoretical account. Molecular Catalysis, 2021, 499, 111317.	1.0	11
26	A novel interaction mechanism in lignin pyrolysis: Phenolics-assisted hydrogen transfer for the decomposition of the β-O-4 linkage. Combustion and Flame, 2021, 225, 395-405.	2.8	44
27	Catalytic oxidation of CO over V2O5/TiO2 and V2O5-WO3/TiO2 catalysts: A DFT study. Fuel Processing Technology, 2021, 213, 106678.	3.7	21
28	Theoretical insight into the interaction mechanism between V2O5/TiO2 (0 0 1) surface and arsenic oxides in flue gas. Applied Surface Science, 2021, 535, 147752.	3.1	12
29	Numerical solutions of non-gray gases and particles radiative transfer in three-dimensional combustion system using DRESOR and SNBCK. International Journal of Thermal Sciences, 2021, 161, 106783.	2.6	9
30	Virtual Special Issue of Recent Research Advances in China: Thermochemical Processing of Biomass and Solid Wastes. Energy & Fuels, 2021, 35, 1885-1889.	2.5	6
31	On the mechanism of xylan pyrolysis by combined experimental and computational approaches. Proceedings of the Combustion Institute, 2021, 38, 4215-4223.	2.4	24
32	Effects of C2H2 and C2H4 radiation on soot formation in ethylene/air diffusion flames. Applied Thermal Engineering, 2021, 183, 116194.	3.0	21
33	Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	12
34	Novel design strategies for perovskite materials with improved stability and suitable band gaps. Physical Chemistry Chemical Physics, 2021, 23, 20288-20297.	1.3	1
35	Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	12
36	Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process. Applied Energy, 2021, 285, 116388.	5.1	14

#	Article	IF	CITATIONS
37	Experimental Study on Oxy-Fuel Combustion and NO Emission in a Spouted-Fluidized Bed with under Bed Feeding. Journal of Thermal Science, 2021, 30, 1132-1140.	0.9	9
38	A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors. Frontiers of Chemical Science and Engineering, 2021, 15, 1217-1228.	2.3	12
39	Catalytic fast pyrolysis of cellulose for selective production of 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one using nickel-tin layered double oxides. Industrial Crops and Products, 2021, 162, 113269.	2.5	12
40	Effect of alkali metal ions on the formation mechanism of HCN during pyridine pyrolysis. International Journal of Coal Science and Technology, 2021, 8, 349-359.	2.7	8
41	Theoretical insights into the roles of active oxygen species in heterogeneous oxidation of CO over Mn/TiO2 catalyst. Applied Catalysis A: General, 2021, 616, 118104.	2.2	12
42	Selective preparation of 5-hydroxymethylfurfural by catalytic fast pyrolysis of cellulose over zirconium-tin mixed metal oxides. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105103.	2.6	18
43	Mechanism study on the formation of furfural during zinc chloride-catalyzed pyrolysis of xylose. Fuel, 2021, 295, 120656.	3.4	17
44	Hydroxyl-Assisted Hydrogen Transfer Interaction in Lignin Pyrolysis: An Extended Concerted Interaction Mechanism. Energy & Fuels, 2021, 35, 13170-13180.	2.5	17
45	First-principles insights into the adsorption and interaction mechanism of selenium on selective catalytic reduction catalyst. Chemosphere, 2021, 275, 130057.	4.2	10
46	Mechanical insight into the formation of H2S from thiophene pyrolysis: The influence of H2O. Chemosphere, 2021, 279, 130628.	4.2	9
47	Simultaneous removal of NO and N2O over commercial V2O5-MoO3/TiO2 catalyst modified with bismuth-nickel oxides. Applied Catalysis A: General, 2021, 625, 118336.	2.2	6
48	Sensing Mechanism of H2O, NH3, and O2 on the Stability-Improved Cs2Pb(SCN)2Br2 Surface: A Quantum Dynamics Investigation. ACS Omega, 2021, 6, 24244-24255.	1.6	0
49	Structures and pyrolytic characteristics of organosolv lignins from typical softwood, hardwood and herbaceous biomass. Industrial Crops and Products, 2021, 171, 113912.	2.5	35
50	Interaction mechanism between cadmium species and SiO2 of municipal solid waste incineration fly ash: Effect of HCl. Chemical Engineering Journal, 2021, 425, 130604.	6.6	19
51	Formation mechanism of NO precursors during the pyrolysis of 2,5-diketopiperazine based on experimental and theoretical study. Science of the Total Environment, 2021, 801, 149663.	3.9	28
52	Measurement of temperature and emissivity of biomass candle flame using spectral thermometry. Optik, 2021, 247, 168019.	1.4	5
53	Understanding the sensing mechanisms of perovskite materials for gases with different properties: a perspective from the oxidation–reduction states of central metal ions. Journal of Materials Chemistry C, 2021, 9, 15511-15521.	2.7	3
54	Catalytic pyrolysis of biomass impregnated with elements from steelmaking slag leaching and simultaneous fabrication of phosphorus adsorbent. Journal of Cleaner Production, 2021, 328, 129490.	4.6	14

#	Article	IF	CITATIONS
55	Reaction characteristics and mechanisms of sorbitol fast pyrolysis. Journal of Fuel Chemistry and Technology, 2021, 49, 1821-1831.	0.9	5
56	Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process. Energy, 2020, 190, 116371.	4.5	20
57	Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose. Journal of Energy Chemistry, 2020, 43, 78-89.	7.1	54
58	Formation mechanism of HCN and NH3 during indole pyrolysis: A theoretical DFT study. Journal of the Energy Institute, 2020, 93, 649-657.	2.7	60
59	Effects of NH ₄ H ₂ PO ₄ -Loading and Temperature on the Two-Stage Pyrolysis of Biomass: Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry Study. Journal of Biobased Materials and Bioenergy, 2020, 14, 76-82.	0.1	8
60	Selective production of monocyclic aromatic hydrocarbons from <i>ex situ</i> catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen source. Sustainable Energy and Fuels, 2020, 4, 538-548.	2.5	51
61	Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Applied Catalysis B: Environmental, 2020, 268, 118429.	10.8	85
62	Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. Renewable and Sustainable Energy Reviews, 2020, 134, 110305.	8.2	126
63	Experimental Investigation into NO Removal over Circulating Ash in Selective Noncatalytic Reduction during Circulating Fluidized Bed Combustion. Industrial & Engineering Chemistry Research, 2020, 59, 9451-9458.	1.8	0
64	Taming NO oxidation efficiency by \hat{I}^3 -MnO2 morphology regulation. Catalysis Science and Technology, 2020, 10, 5996-6005.	2.1	16
65	Thermal behaviour, kinetics and fast pyrolysis of Cynodon dactylon grass using Py-GC/MS and Py-FTIR analyser. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104887.	2.6	44
66	Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass. Energy & Fuels, 2020, 34, 10384-10440.	2.5	91
67	Temperature and emissivity measurements from combustion of pine wood, rice husk and fir wood using flame emission spectrum. Fuel Processing Technology, 2020, 204, 106423.	3.7	34
68	Interaction mechanism between Se species in flue gas and V2O5-MoO3/TiO2 catalyst: An in-depth experimental and theoretical study. Chemical Engineering Journal, 2020, 398, 125615.	6.6	12
69	Pyrolysis of Biomass Impregnated With Ammonium Dihydrogen Phosphate for Polygeneration of Phenol and Supercapacitor Electrode Material. Frontiers in Chemistry, 2020, 8, 436.	1.8	18
70	<i>Ex situ</i> catalytic fast pyrolysis of soy sauce residue with HZSM-5 for co-production of aromatic hydrocarbons and supercapacitor materials. RSC Advances, 2020, 10, 23331-23340.	1.7	9
71	Catalytic oxidation of NH3 over circulating ash in the selective non-catalytic reduction process during circulating fluidized bed combustion. Fuel, 2020, 271, 117546.	3.4	12
72	Catalytic fast pyrolysis of biomass with Ni-P-MCM-41 to selectively produce levoglucosenone. Journal of Analytical and Applied Pyrolysis, 2020, 148, 104824.	2.6	38

#	Article	IF	CITATIONS
73	Enhanced production of 4-ethyl phenol from activated carbon catalyzed fast pyrolysis of bagasse with 9,10-dihydroanthracene as a hydrogen donor. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104880.	2.6	11
74	Calcium formate assisted catalytic pyrolysis of pine for enhanced production of monocyclic aromatic hydrocarbons over bimetal-modified HZSM-5. Bioresource Technology, 2020, 315, 123805.	4.8	25
75	Deactivation Mechanism of the Commercial V ₂ O ₅ –MoO ₃ /TiO ₂ Selective Catalytic Reduction Catalyst by Arsenic Poisoning in Coal-Fired Power Plants. Energy & Fuels, 2020, 34, 4865-4873.	2.5	48
76	Selective preparation of 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one by fast pyrolysis of cellulose catalyzed with metal-loaded nitrided HZSM-5. Bioresource Technology, 2020, 309, 123370.	4.8	17
77	An improved full-spectrum correlated-k-distribution model for non-gray radiative heat transfer in combustion gas mixtures. International Communications in Heat and Mass Transfer, 2020, 114, 104566.	2.9	14
78	Inhibition effects of Pb species on the V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3: A DFT supported experimental study. Applied Surface Science, 2020, 525, 146582.	3.1	32
79	Formation mechanism of hydroxyacetone in glucose pyrolysis: A combined experimental and theoreticalÂstudy. Proceedings of the Combustion Institute, 2019, 37, 2741-2748.	2.4	32
80	Effects of gaseous agents on the evolution of char physical and chemical structures during biomass gasification. Bioresource Technology, 2019, 292, 121994.	4.8	37
81	Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia. Green Chemistry, 2019, 21, 812-820.	4.6	46
82	Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst. Applied Catalysis A: General, 2019, 587, 117263.	2.2	37
83	Catalytic fast pyrolysis of alkali-pretreated bagasse for selective preparation of 4-vinylphenol. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104669.	2.6	19
84	Highly efficient catalytic conversion of cellulose into acetol over Ni–Sn supported on nanosilica and the mechanism study. Green Chemistry, 2019, 21, 5647-5656.	4.6	41
85	Catalytic Mechanism of Calcium on the Formation of HCN during Pyrolysis of Pyrrole and Indole: A Theoretical Study. Energy & Fuels, 2019, 33, 11516-11523.	2.5	12
86	Selective preparation of monocyclic aromatic hydrocarbons from ex-situ catalytic fast pyrolysis of pine over Ti(SO4)2-Mo2N/HZSM-5 catalyst. Fuel, 2019, 243, 88-96.	3.4	45
87	Fast pyrolysis of biomass catalyzed by magnetic solid base catalyst in a hydrogen atmosphere for selective production of phenol. Industrial Crops and Products, 2019, 137, 495-500.	2.5	36
88	Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid. Cellulose, 2019, 26, 8279-8290.	2.4	25
89	Effect of WO3 doping on the mechanism of mercury oxidation by HCl over V2O5/TiO2 (001) surface: Periodic density functional theory study. Applied Surface Science, 2019, 487, 369-378.	3.1	26
90	Mechanism insight into the fast pyrolysis of xylose, xylobiose and xylan by combined theoretical and experimental approaches. Combustion and Flame, 2019, 206, 177-188.	2.8	42

4

#	Article	IF	CITATIONS
91	Electro-catalytic steam reforming of methane over Ni-CeO2/γ-Al2O3-MgO catalyst. Fuel Processing Technology, 2019, 192, 57-64.	3.7	26
92	Poisoning effects of lead species on the V ₂ O ₅ â€WO ₃ /TiO ₂ type NH ₃ â€selective catalytic reduction catalyst. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2309.	0.8	7
93	Comparative study of pyrolysis characteristics of bamboo powder and grape vine by anaerobic fermentation pretreatment. Journal of Analytical and Applied Pyrolysis, 2019, 140, 93-101.	2.6	12
94	In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples. Renewable Energy, 2019, 139, 730-738.	4.3	17
95	Regeneration of commercial SCR catalyst deactivated by arsenic poisoning in coal-fired power plants. Korean Journal of Chemical Engineering, 2019, 36, 377-384.	1.2	21
96	Interaction between Acetic Acid and Glycerol: A Model for Secondary Reactions during Holocellulose Pyrolysis. Journal of Physical Chemistry A, 2019, 123, 674-681.	1.1	12
97	Influence of inherent alkali metal chlorides on pyrolysis mechanism of a lignin model dimer based on DFT study. Journal of Thermal Analysis and Calorimetry, 2019, 137, 151-160.	2.0	23
98	Theoretical study of the effect of hydrogen radicals on the formation of HCN from pyrrole pyrolysis. Journal of the Energy Institute, 2019, 92, 1468-1475.	2.7	19
99	Fast Pyrolysis of Corn Stalks at Different Growth Stages to Selectively Produce 4-Vinyl Phenol and 5-Hydroxymethyl Furfural. Waste and Biomass Valorization, 2019, 10, 3867-3878.	1.8	14
100	Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis. Journal of the Energy Institute, 2019, 92, 604-612.	2.7	37
101	Catalytic Fast Pyrolysis of Wheat Stalk with Transition Metal Nitrides to Upgrade the Pyrolytic Products. Journal of Biobased Materials and Bioenergy, 2019, 13, 870-905.	0.1	2
102	Mechanism of heterogeneous mercury oxidation by HCl on V2O5(001) surface. Current Applied Physics, 2018, 18, 626-632.	1.1	18
103	Monocyclic aromatic hydrocarbons production from catalytic cracking of pine wood-derived pyrolytic vapors over Ce-Mo2N/HZSM-5 catalyst. Science of the Total Environment, 2018, 634, 141-149.	3.9	36
104	Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo 2 N/HZSM-5 catalyst. Fuel Processing Technology, 2018, 173, 134-142.	3.7	65
105	Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study. Fuel, 2018, 215, 386-394.	3.4	49
106	Pyrolytic behaviors of decocting residues of Rhodiola rosea. Journal of Analytical and Applied Pyrolysis, 2018, 129, 61-65.	2.6	9
107	Pyrolysis mechanism of glucose and mannose: The formation of 5-hydroxymethyl furfural and furfural. Journal of Energy Chemistry, 2018, 27, 486-501.	7.1	65

A study of product distribution under fast pyrolysis of wheat stalk while producing bio-oil. , 2018, , .

#	Article	IF	CITATIONS
109	Sketching Pakistan's energy dynamics: Prospects of biomass energy. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	40
110	The performance of nickel-loaded lignite residue for steam reforming of toluene as the model compound of biomass gasification tar. Journal of the Energy Institute, 2018, 91, 867-876.	2.7	24
111	Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study. Catalysis Today, 2018, 302, 169-179.	2.2	100
112	Experimental Study on Ni/γ-Al2O3 and Its Modified Catalysts for Catalytic Steam Reforming of Methane. , 2018, , .		0
113	Density Functional Theory Study on Mechanism of Mercury Removal by CeO2 Modified Activated Carbon. Energies, 2018, 11, 2872.	1.6	13
114	Poisoning Effects of P and Zn on Commercial NH3-SCR V2O5-MoO3/TiO2 Catalyst. , 2018, , .		0
115	Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts, 2018, 8, 659.	1.6	113
116	Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation. Industrial Crops and Products, 2018, 125, 596-601.	2.5	28
117	Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units. Combustion and Flame, 2018, 198, 267-277.	2.8	72
118	Catalytic fast pyrolysis of sugarcane bagasse using activated carbon catalyst in a hydrogen atmosphere to selectively produce 4-ethyl phenol. Journal of Analytical and Applied Pyrolysis, 2018, 136, 125-131.	2.6	25
119	Investigation on the NO Removal from Simulated Flue Gas by Using H ₂ O ₂ Vapor over Fe ₂ (MoO ₄) ₃ . Energy & Fuels, 2018, 32, 8605-8613.	2.5	19
120	Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2. Applied Surface Science, 2018, 457, 821-830.	3.1	31
121	Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO2 (111) Surface: A DFT Study. Materials, 2018, 11, 485.	1.3	27
122	Theoretical Investigation of the Formation Mechanism of NH3 and HCN during Pyrrole Pyrolysis: The Effect of H2O. Molecules, 2018, 23, 711.	1.7	16
123	Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon. Frontiers in Chemistry, 2018, 6, 32.	1.8	23
124	Experiment and Modeling Study of Glucose Pyrolysis: Formation of 3-Hydroxy-Î ³ -butyrolactone and 3-(2 <i>H</i>)-Furanone. Energy & Fuels, 2018, 32, 9519-9529.	2.5	18
125	Catalytic mechanism of sulfuric acid in cellulose pyrolysis: A combined experimental and computational investigation. Journal of Analytical and Applied Pyrolysis, 2018, 134, 183-194.	2.6	44
126	Theoretical Study of Mercury Species Adsorption on MgO(001) Surface. IOP Conference Series: Earth and Environmental Science, 2017, 63, 012023.	0.2	1

#	Article	lF	CITATIONS
127	Selective production of 4-ethyl guaiacol from catalytic fast pyrolysis of softwood biomass using Pd/SBA-15 catalyst. Journal of Analytical and Applied Pyrolysis, 2017, 123, 237-243.	2.6	18
128	Interaction characteristics and mechanism in the fast co-pyrolysis of cellulose and lignin model compounds. Journal of Thermal Analysis and Calorimetry, 2017, 130, 975-984.	2.0	19
129	Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 10815-10825.	3.2	105
130	Pyrolysis characteristic changes of poplar wood during natural decay. Journal of Analytical and Applied Pyrolysis, 2017, 128, 257-260.	2.6	14
131	Insight into the Formation of Anhydrosugars in Glucose Pyrolysis: A Joint Computational and Experimental Investigation. Energy & Fuels, 2017, 31, 8291-8299.	2.5	22
132	Improved production and quality of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera via addition of crude glycerol. Journal of Cleaner Production, 2017, 142, 749-757.	4.6	61
133	Potassium recovery from the fly ash from a grate boiler firing agroâ€residues: effects of unburnt carbon and calcination pretreatment. Journal of Chemical Technology and Biotechnology, 2017, 92, 801-807.	1.6	6
134	A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers. International Journal of Molecular Sciences, 2017, 18, 2364.	1.8	30
135	Removal of NOX Using Hydrogen Peroxide Vapor over Fe/TiO2 Catalysts and an Absorption Technique. Catalysts, 2017, 7, 386.	1.6	16
136	Experimental and Theoretical Studies on the Pyrolysis Mechanism of β-1-Type Lignin Dimer Model Compound. BioResources, 2016, 11, .	0.5	8
137	Catalytic Fast Pyrolysis of Bagasse Using Activated Carbon Catalyst to Selectively Produce 4-Ethyl Phenol. Energy & Fuels, 2016, 30, 10618-10626.	2.5	50
138	Theoretical study on the effect of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds. Journal of Fuel Chemistry and Technology, 2016, 44, 335-341.	0.9	8
139	Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. Journal of Analytical and Applied Pyrolysis, 2016, 120, 15-26.	2.6	63
140	Study on pyrolysis characteristics of red pepper stalks to analyze the changes of pyrolytic behaviors from xylophyta to herbage. Journal of Analytical and Applied Pyrolysis, 2016, 120, 330-333.	2.6	13
141	Selective production of nicotyrine from catalytic fast pyrolysis of tobacco biomass with Pd/C catalyst. Journal of Analytical and Applied Pyrolysis, 2016, 117, 88-93.	2.6	21
142	Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. Journal of Thermal Analysis and Calorimetry, 2016, 123, 501-510.	2.0	34
143	Research on the catalytic oxidation of HgO by modified SCR catalysts. Journal of Fuel Chemistry and Technology, 2015, 43, 628-634.	0.9	17
144	Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis. Energies, 2015, 8, 13021-13032.	1.6	24

#	Article	IF	CITATIONS
145	Pyrolytic characteristics of sweet potato vine. Bioresource Technology, 2015, 192, 799-801.	4.8	14
146	Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass. Journal of Analytical and Applied Pyrolysis, 2015, 115, 307-315.	2.6	30
147	Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energy Conversion and Management, 2015, 106, 1309-1317.	4.4	70
148	Selective Production of Levoglucosenone from Catalytic Fast Pyrolysis of Biomass Mechanically Mixed with Solid Phosphoric Acid Catalysts. Bioenergy Research, 2015, 8, 1263-1274.	2.2	75
149	Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas. Energy Conversion and Management, 2015, 100, 56-63.	4.4	41
150	Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 2015, 113, 499-507.	2.6	193
151	Catalytic Cracking of Biomass High-Temperature Pyrolysis Tar Using NiO/AC Catalysts. International Journal of Green Energy, 2015, 12, 773-779.	2.1	21
152	Pyrolysis mechanism of β O 4 type lignin model dimer. Journal of Analytical and Applied Pyrolysis, 2015, 115, 103-111.	2.6	59
153	Selective Analytical Production of 1-Hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one from Catalytic Fast Pyrolysis of Cellulose with Zinc-Aluminium Layered Double Oxide Catalyst. BioResources, 2015, 10, .	0.5	12
154	Upgrading of Rice Husk by Torrefaction and its Influence on the Fuel Properties. BioResources, 2014, 9,	0.5	57
155	Torrefaction of Rice Husk using TG-FTIR and its Effect on the Fuel Characteristics, Carbon, and Energy Yields. BioResources, 2014, 9, .	0.5	20
156	Selective Production of Phenolic-rich Bio-oil from Catalytic Fast Pyrolysis of Biomass: Comparison of K3PO4, K2HPO4, and KH2PO4. BioResources, 2014, 9, .	0.5	9
157	Fast pyrolysis product distribution of biopretreated corn stalk by methanogen. Bioresource Technology, 2014, 169, 812-815.	4.8	21
158	The mechanism for the formation of levoglucosenone during pyrolysis of β-d-glucopyranose and cellobiose: A density functional theory study. Journal of Analytical and Applied Pyrolysis, 2014, 110, 34-43.	2.6	68
159	Catalytic Upgrading of Biomass Fast Pyrolysis Vapors Using Ordered Mesoporous ZrO2, TiO2 and SiO2. Energy Procedia, 2014, 61, 1937-1941.	1.8	29
160	Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen. Bioresource Technology, 2014, 164, 416-419.	4.8	26
161	Effects of chemical inhomogeneity on pyrolysis behaviors of corn stalk fractions. Fuel, 2014, 129, 111-115.	3.4	21
162	Influence of alkaline hydrothermal pretreatment on shrub wood Tamarix ramosissima : Characteristics of degraded lignin. Biomass and Bioenergy, 2014, 68, 82-94.	2.9	23

#	Article	IF	CITATIONS
163	Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42â^'/TiO2–Fe3O4. Bioresource Technology, 2014, 171, 10-15.	4.8	111
164	Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 2013, 104, 139-145.	2.6	107
165	TG-FTIR Analysis on Evaporation, Decomposition and Combustion Characteristics of Bio-Oil. Applied Mechanics and Materials, 2013, 291-294, 359-363.	0.2	1
166	Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural. Journal of Fuel Chemistry and Technology, 2013, 41, 1303-1309.	0.9	5
167	Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural. Journal of Fuel Chemistry and Technology, 2013, 41, 1070-1076.	0.9	19
168	Selective Fast Pyrolysis of Biomass to Produce Fuels and Chemicals. , 2013, , 129-146.		3
169	Selective Production of 4-Vinylphenol by Fast Pyrolysis of Herbaceous Biomass. Industrial & Engineering Chemistry Research, 2013, 52, 12771-12776.	1.8	47
170	Modelling and Simulation of Biomass Conversion Processes. , 2013, , .		1
171	Thermogravimetric Analysis of Raw and Demineralized Biomass Materials. Applied Mechanics and Materials, 2013, 291-294, 307-311.	0.2	0
172	Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts. Energies, 2013, 6, 3284-3296.	1.6	72
173	Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil. Energies, 2012, 5, 741-751.	1.6	23
174	Deep reduction behavior of iron oxide and its effect on direct CO oxidation. Applied Surface Science, 2012, 258, 2562-2569.	3.1	34
175	Characterization of the water-insoluble pyrolytic cellulose from cellulose pyrolysis oil. Journal of Analytical and Applied Pyrolysis, 2012, 97, 49-54.	2.6	20
176	Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conversion and Management, 2012, 57, 49-59.	4.4	180
177	Synthesis and Third-order Optical Nonlinearity of Mesoporous Au/ZrO ₂ Thin Films. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 327-331.	0.6	0
178	Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 2011, 92, 430-438.	2.6	332
179	Catalytic Fast Pyrolysis of Cellulose to Prepare Levoglucosenone Using Sulfated Zirconia. ChemSusChem, 2011, 4, 79-84.	3.6	95
180	Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system. Applied Surface Science, 2011, 257, 8647-8652.	3.1	53

Qiang Lu

#	Article	IF	CITATIONS
181	Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities. Optical Materials, 2011, 33, 1266-1271.	1.7	10
182	Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 2011, 90, 204-212.	2.6	160
183	Selective fast pyrolysis of biomass impregnated with ZnCl2: Furfural production together with acetic acid and activated carbon as by-products. Journal of Analytical and Applied Pyrolysis, 2011, 91, 273-279.	2.6	92
184	The DeNOx Characteristics of V/Ti Plate SCR Catalysts. Advanced Materials Research, 2011, 356-360, 1712-1715.	0.3	0
185	Discussion of Energy Consumption Analysis Method on Energy System. Applied Mechanics and Materials, 2011, 130-134, 1578-1581.	0.2	1
186	Experimental Research on Heterogeneous N2O Decomposition with Ash and Biomass Gasification Gas. Energies, 2011, 4, 2027-2037.	1.6	6
187	Fast and catalytic pyrolysis of xylan: Effects of temperature and M/HZSM-5 (M = Fe, Zn) catalysts on pyrolytic products. Frontiers of Energy and Power Engineering in China, 2010, 4, 424-429.	0.4	18
188	Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel, 2010, 89, 2096-2103.	3.4	175
189	CFD Studies on the Air Flow in a Double-Grate Biomass Fired Boiler. , 2010, , .		3
190	Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Pd/SBA-15 Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 2573-2580.	1.8	91
191	Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study. Energies, 2010, 3, 1805-1820.	1.6	253
192	The Design and Tests in a Three Interconnected Fluidized Bed. , 2010, , .		0
193	Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management, 2009, 50, 1376-1383.	4.4	683
194	On-line catalytic upgrading of biomass fast pyrolysis products. Science Bulletin, 2009, 54, 1941-1948.	4.3	46
195	Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresource Technology, 2009, 100, 4871-4876.	4.8	174
196	One Step Bio-Oil Upgrading through Hydrotreatment, Esterification, and Cracking. Industrial & Engineering Chemistry Research, 2009, 48, 6923-6929.	1.8	166
197	Corrosion properties of bio-oil and its emulsions with diesel. Science Bulletin, 2008, 53, 3726-3734.	1.7	50
198	Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. Journal of Analytical and Applied Pyrolysis, 2008, 82, 191-198.	2.6	244

#	Article	IF	CITATIONS
199	Production of Chemicals from Selective Fast Pyrolysis of Biomass. , 0, , .		11
200	Comparison of Three Types of NH ₃ -SCR Catalysts. Applied Mechanics and Materials, 0, 130-134, 418-421.	0.2	2
201	Research on TG-DTG Analysis and Combustion Kinetics Characteristic of Biomass Fly Ash and Ash. Applied Mechanics and Materials, 0, 130-134, 396-400.	0.2	1
202	Overview of Chemical Characterization of Biomass Fast Pyrolysis Oils. Applied Mechanics and Materials, 0, 130-134, 422-425.	0.2	2
203	Research on Additional Specific Consumption Distribution of Biomass Direct Combustion Power Plant. Advanced Materials Research, 0, 347-353, 631-634.	0.3	0
204	Preparation and Characterization of Briquette Fuel from Biomass-Fired Fly Ash. Advanced Materials Research, 0, 347-353, 2464-2467.	0.3	1
205	Overview of Methods to Remove Solid Particles from Biomass Fast Pyrolysis Oils. Advanced Materials Research, 0, 608-609, 265-268.	0.3	1
206	Recent Progress in Biomass Tar Catalytic Cracking Method Research. Advanced Materials Research, 0, 608-609, 448-452.	0.3	3
207	Overview of Bio-Oil Upgrading via Catalytic Cracking. Advanced Materials Research, 0, 827, 25-29.	0.3	15
208	Analytical Fast Pyrolysis of Glucose, Cellubiose and Cellulose: Comparison of the Pyrolytic Product Distribution. Advanced Materials Research, 0, 805-806, 186-190.	0.3	0
209	Production of Phenolic Compounds from Low Temperature Catalytic Fast Pyrolysis of Biomass with Activated Carbon. Applied Mechanics and Materials, 0, 541-542, 190-194.	0.2	2
210	Effect of Sodium Oxides in Ash Composition on Ash Fusibility. Energy & Fuels, 0, , .	2.5	17
211	Softening of wastewater from wet flue gas desulfurization process based on internal airlift loop reactor (IALR). , 0, 109, 125-131.		0