Ac Dias

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/447373/ac-dias-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14 117 6 10 g-index

19 193 3.7 2.87 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
14	Tailoring Excitonic and Optoelectronic Properties of Transition Metal Dichalcogenide Bilayers. Journal of Physical Chemistry C, 2022 , 126, 9173-9184	3.8	1
13	Excitonic Effects on Two-Dimensional Transition-Metal Dichalcogenide Monolayers: Impact on Solar Cell Efficiency. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3265-3278	6.1	2
12	Role of Structural Phases and Octahedra Distortions in the Optoelectronic and Excitonic Properties of CsGeX3 (X = Cl, Br, I) Perovskites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 19142-19155	3.8	6
11	Robust room temperature emissions of trion in darkish WSe monolayers: effects of dark neutral and charged excitonic states. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 365702	1.8	2
10	Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons. <i>Physical Review B</i> , 2020 , 101,	3.3	4
9	Magnetic-gateable valley exciton emission. Npj Computational Materials, 2020, 6,	10.9	4
8	Large room-temperature valley polarization by valley-selective switching of exciton ground state. <i>Physical Review B</i> , 2020 , 101,	3.3	7
7	Fully spin-polarized open and closed nodal lines in Eborophene by magnetic proximity effect. <i>Physical Review B</i> , 2019 , 100,	3.3	7
6	Band structure of monolayer transition-metal dichalcogenides and topological properties of their nanoribbons: Next-nearest-neighbor hopping. <i>Physical Review B</i> , 2018 , 98,	3.3	24
5	Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 265502	1.8	6
4	Tunable spin and valley dependent magneto-optical absorption in molybdenum disulfide quantum dots. <i>Scientific Reports</i> , 2017 , 7, 41044	4.9	19
3	Robust effective Zeeman energy in monolayer MoS2 quantum dots. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 375803	1.8	14
2	Valley Zeeman energy in monolayer MoS2 quantum rings: Aharonov-Bohm effect. <i>Physical Review B</i> , 2016 , 93,	3.3	15
1	Particle-holelike symmetry and valley degeneracy splitting in graphene dot and antidot. <i>Europhysics Letters</i> , 2015 , 111, 38002	1.6	1