
## Arn Mignon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4473677/publications.pdf Version: 2024-02-01



ADN MICNON

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Polymer-Based Constructs for Flexor Tendon Repair: A Review. Polymers, 2022, 14, 867.                                                                                                                                                 | 2.0 | 11        |
| 2  | Deformations in Cement Pastes during Capillary Imbibition and Their Relation to Water and<br>Isopropanol as Imbibing Liquids. Materials, 2022, 15, 36.                                                                                | 1.3 | 2         |
| 3  | Activated Carbon Containing PEGâ€Based Hydrogels as Novel Candidate Dressings for the Treatment of Malodorous Wounds. Macromolecular Materials and Engineering, 2021, 306, .                                                          | 1.7 | 14        |
| 4  | Design and development of a reinforced tubular electrospun construct for the repair of ruptures of deep flexor tendons. Materials Science and Engineering C, 2021, 119, 111504.                                                       | 3.8 | 15        |
| 5  | Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers, 2021, 13, 760.                                                                                 | 2.0 | 28        |
| 6  | New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and<br>In Vitro Biological Evaluation. Polymers, 2021, 13, 1291.                                                                        | 2.0 | 8         |
| 7  | Viability determination of Bacillus sphaericus after encapsulation in hydrogel for self-healing<br>concrete via microcalorimetry and in situ oxygen concentration measurements. Cement and Concrete<br>Composites, 2021, 119, 104006. | 4.6 | 32        |
| 8  | Photoâ€Crosslinked Gelatinâ€Based Hydrogel Films to Support Wound Healing. Macromolecular<br>Bioscience, 2021, 21, e2100246.                                                                                                          | 2.1 | 10        |
| 9  | In-situ crosslinking of superabsorbent polymers as external curing layer compared to internal curing to mitigate plastic shrinkage. Construction and Building Materials, 2020, 262, 120819.                                           | 3.2 | 17        |
| 10 | Development of Gelatinâ€Alginate Hydrogels for Burn Wound Treatment. Macromolecular Bioscience,<br>2019, 19, e1900123.                                                                                                                | 2.1 | 62        |
| 11 | Superabsorbent polymers: A review on the characteristics and applications of synthetic,<br>polysaccharide-based, semi-synthetic and â€̃smart' derivatives. European Polymer Journal, 2019, 117,<br>165-178.                           | 2.6 | 168       |
| 12 | Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house<br>developed (semi-)synthetic superabsorbent polymers. Cement and Concrete Composites, 2018, 94,<br>166-180.                     | 4.6 | 38        |
| 13 | A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete.<br>Cement and Concrete Composites, 2018, 93, 309-322.                                                                                | 4.6 | 82        |
| 14 | Pore structure description of mortars containing ground granulated blast-furnace slag by mercury<br>intrusion porosimetry and dynamic vapour sorption. Construction and Building Materials, 2017, 145,<br>157-165.                    | 3.2 | 62        |
| 15 | Characterization of methacrylated alginate and acrylic monomers as versatile SAPs. Carbohydrate<br>Polymers, 2017, 168, 44-51.                                                                                                        | 5.1 | 11        |
| 16 | Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar. Carbohydrate Polymers, 2017, 168, 173-181.                                                                      | 5.1 | 16        |
| 17 | Development of amine-based pH-responsive superabsorbent polymers for mortar applications.<br>Construction and Building Materials, 2017, 132, 556-564.                                                                                 | 3.2 | 23        |
| 18 | Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.                                         | 1.3 | 31        |

Arn Mignon

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Combinatory approach of methacrylated alginate and acid monomers for concrete applications.<br>Carbohydrate Polymers, 2017, 155, 448-455.                                       | 5.1 | 27        |
| 20 | Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering.<br>Carbohydrate Polymers, 2017, 157, 1714-1722.                         | 5.1 | 62        |
| 21 | Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?. Materials, 2017, 10, 237.                                                                             | 1.3 | 113       |
| 22 | Role of the surface chemistry of the adsorbent on the initialization step of the water sorption process. Carbon, 2016, 106, 284-288.                                            | 5.4 | 28        |
| 23 | Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength.<br>Construction and Building Materials, 2016, 110, 169-174.                       | 3.2 | 86        |
| 24 | Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology, 2015, 6, 1088.  | 1.5 | 144       |
| 25 | The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cement and Concrete Research, 2015, 77, 26-35. | 4.6 | 107       |
| 26 | Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. European<br>Polymer Journal, 2015, 72, 494-506.                                           | 2.6 | 54        |
| 27 | pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete.<br>Journal of Materials Science, 2015, 50, 970-979.                             | 1.7 | 117       |
| 28 | The influence of different drying techniques on the water sorption properties of cement-based materials. Cement and Concrete Research, 2014, 64, 54-62.                         | 4.6 | 111       |