
Ghayas C Issa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4473671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	2.2	201
2	Hyper VAD plus ponatinib versus hyper VAD plus dasatinib as frontline therapy for patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia: A propensity score analysis. Cancer, 2016, 122, 3650-3656.	2.0	156
3	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	0.8	156
4	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	2.8	85
5	Therapeutic implications of menin inhibition in acute leukemias. Leukemia, 2021, 35, 2482-2495.	3.3	76
6	Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer Journal, 2021, 11, 107.	2.8	73
7	Clonal chromosomal abnormalities appearing in Philadelphia chromosome–negative metaphases during CML treatment. Blood, 2017, 130, 2084-2091.	0.6	65
8	Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatmentâ€related mortality. American Journal of Hematology, 2021, 96, 282-291.	2.0	59
9	Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Advances, 2021, 5, 1876-1883.	2.5	56
10	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	2.6	50
11	Prognostic impact of pretreatment cytogenetics in adult <scp>P</scp> hiladelphia chromosome–negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer, 2017, 123, 459-467.	2.0	49
12	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	2.8	48
13	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	2.2	43
14	Poor outcomes associated with +der(22)t(9;22) and â^'9/9p in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. American Journal of Hematology, 2017, 92, 238-243.	2.0	41
15	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	0.8	41
16	The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia, 2021, 35, 691-700.	3.3	37
17	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	2.8	33
18	Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer Journal, 2021, 11, 162.	2.8	32

GHAYAS C ISSA

#	Article	IF	CITATIONS
19	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	2.0	31
20	Venetoclax for Children and Adolescents with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancers, 2022, 14, 150.	1.7	30
21	Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes, 2020, 11, 649.	1.0	29
22	Outcomes of acute lymphoblastic leukemia with <i>KMT2A</i> (<i>MLL</i>) rearrangement: the MD Anderson experience. Blood Advances, 2021, 5, 5415-5419.	2.5	24
23	Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer Journal, 2020, 10, 48.	2.8	22
24	Ultra-accurate Duplex Sequencing for the assessment of pretreatment ABL1 kinase domain mutations in Ph+ ALL. Blood Cancer Journal, 2020, 10, 61.	2.8	20
25	Prognostic significance of day 14 bone marrow evaluation in adults with Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer, 2016, 122, 3812-3820.	2.0	17
26	Characteristics and outcomes of patients with therapy-related acute myeloid leukemia with normal karyotype. Blood Cancer Journal, 2020, 10, 47.	2.8	17
27	Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti–PD-1–based therapy. Blood Advances, 2021, 5, 4569-4574.	2.5	15
28	Calibration-free NGS quantitation of mutations below 0.01% VAF. Nature Communications, 2021, 12, 6123.	5.8	13
29	A phase 2 study of hyper-CVAD plus ofatumumab as frontline therapy in CD20+ acute lymphoblastic leukemia (ALL): Updated results Journal of Clinical Oncology, 2018, 36, 7041-7041.	0.8	12
30	A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	0.6	12
31	Outcomes in Molecular Subgroups and Resistance Patterns with Ten-Day Decitabine and Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia. Blood, 2019, 134, 645-645.	0.6	9
32	Venetoclax, FLT3 Inhibitor and Decitabine in FLT3mut Acute Myeloid Leukemia: Subgroup Analysis of a Phase II Trial. Blood, 2020, 136, 53-55.	0.6	8
33	Phase II trial of CPX-351 in patients with acute myeloid leukemia at high risk for induction mortality. Leukemia, 2020, 34, 2914-2924.	3.3	7
34	Impact of luteinizing hormone suppression on hematopoietic recovery after intensive chemotherapy in patients with leukemia. Haematologica, 2021, 106, 0-0.	1.7	6
35	Presence of 4 or More Driver Mutations Predicts Poor Response to Hypomethylating Agent (HMA) Therapy and Poor Overall Survival in MDS. Blood, 2015, 126, 1663-1663.	0.6	5
36	Realâ€life incidence of thrombotic events in leukemia patients treated with ponatinib. American Journal of Hematology, 2022, 97, .	2.0	4

GHAYAS C ISSA

#	Article	IF	CITATIONS
37	Two Cases of Possible Familial Chronic Myeloid Leukemia in a Family with Extensive History of Cancer. Acta Haematologica, 2021, 144, 585-590.	0.7	3
38	Updated results of frontline ofatumumab-hyper-CVAD in adults with CD20+ acute lymphoblastic leukemia Journal of Clinical Oncology, 2017, 35, 7033-7033.	0.8	3
39	CBFB Break-Apart FISH Testing: An Analysis of 1629 AML Cases with a Focus on Atypical Findings and Their Implications in Clinical Diagnosis and Management. Cancers, 2021, 13, 5354.	1.7	3
40	Ponatinib for the treatment of adult patients with resistant or intolerant Chronic-Phase Chronic Myeloid Leukemia. Expert Opinion on Pharmacotherapy, 2022, 23, 751-758.	0.9	3
41	Chronic myeloid leukemia, BCR-ABL1-positive, carrying NPM1 mutation – First case series from a single institution. Leukemia Research, 2021, 111, 106685.	0.4	2
42	Additional Chromosomal Abnormalities in Philadelphia Chromosome-Negative Metaphases Appearing during Therapy with Imatinib, Dasatinib, Nilotinib and Ponatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia. Blood, 2015, 126, 1577-1577.	0.6	2
43	Prognostic Implications of Pre-Treatment Hypodiploidy and Complex Cytogenetics in Adult Patients with Acute Lymphocytic Leukemia (ALL) Treated with Hyper-CVAD. Blood, 2015, 126, 4874-4874.	0.6	0
44	Archetypes of AML Defined Using Whole Exome Sequencing and Clinical Characteristics in a Diverse Group of Patients. Blood, 2016, 128, 597-597.	0.6	0
45	Distinct patterns of somatic mutation clearance and association with clinical outcome in patients with AML Journal of Clinical Oncology, 2017, 35, 7005-7005.	0.8	0
46	Idarubicin and cytarabine with clofarabine or fludarabine in adults with newly diagnosed acute myeloid leukemia: Updated results of a randomized phase II study Journal of Clinical Oncology, 2017, 35, 7037-7037.	0.8	0
47	Impact of luteinizing hormone suppression on hematopoietic recovery after intensive chemotherapy in patients with leukemia Journal of Clinical Oncology, 2019, 37, 7039-7039.	0.8	0