Vânia Pobre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4473663/publications.pdf

Version: 2024-02-01

16 papers	827 citations	933447 10 h-index	17 g-index
papero		II IIIQOX	5 maca
18 all docs	18 docs citations	18 times ranked	916 citing authors

#	Article	IF	Citations
1	The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiology Reviews, 2010, 34, 883-923.	8.6	285
2	The role of RNases in the regulation of small RNAs. Current Opinion in Microbiology, 2014, 18, 105-115.	5.1	104
3	The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. Rna, 2012, 18, 844-855.	3.5	99
4	Chapter 5 The Role of 3′–5′ Exoribonucleases in RNA Degradation. Progress in Molecular Biology and Translational Science, 2009, 85, 187-229.	1.7	89
5	Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics, 2015, 16, 72.	2.8	63
6	<i>Pseudomonas putida</i> KT2440 is naturally endowed to withstand industrialâ€scale stress conditions. Microbial Biotechnology, 2020, 13, 1145-1161.	4.2	42
7	The <scp>RNase II</scp> / <scp>RNB</scp> family of exoribonucleases: putting the †Dis†in disease. Wiley Interdisciplinary Reviews RNA, 2013, 4, 607-615.	6.4	32
8	Small RNA Modules Confer Different Stabilities and Interact Differently with Multiple Targets. PLoS ONE, 2013, 8, e52866.	2.5	29
9	The Two Weapons against Bacterial Biofilms: Detection and Treatment. Antibiotics, 2021, 10, 1482.	3.7	18
10	PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli. BMC Genomics, 2018, 19, 848.	2.8	16
11	The role of RNA regulators, quorum sensing and câ€diâ€GMP in bacterial biofilm formation. FEBS Open Bio, 2023, 13, 975-991.	2.3	11
12	Exoribonucleases as Modulators of Virulence in Pathogenic Bacteria. Frontiers in Cellular and Infection Microbiology, 2012, 2, 65.	3.9	8
13	Prediction of novel non-coding RNAs relevant for the growth of Pseudomonas putida in a bioreactor. Microbiology (United Kingdom), 2020, 166, 149-156.	1.8	7
14	Defining the impact of exoribonucleases in the shift between exponential and stationary phases. Scientific Reports, 2019, 9, 16271.	3.3	4
15	Characterizing the Role of Exoribonucleases in the Control of Microbial Gene Expression: Differential RNA-Seq. Methods in Enzymology, 2018, 612, 1-24.	1.0	3
16	In silico prediction and expression profile analysis of small non-coding RNAs in Herbaspirillum seropedicae SmR1. BMC Genomics, 2020, 21, 134.	2.8	2