Carl-Eric Wegner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4473584/publications.pdf

Version: 2024-02-01

all docs

430442 433756 1,079 33 18 31 citations g-index h-index papers 34 34 34 1572 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Extracellular and Intracellular Lanthanide Accumulation in the Methylotrophic <i>Beijerinckiaceae</i> Bacterium RH AL1. Applied and Environmental Microbiology, 2021, 87, e0314420.	1.4	12
2	Draft Genome Sequences of <i>Acidithrix</i> sp. Strain C25 and <i>Acidocella</i> sp. Strain C78, Acidophiles Isolated from Iron-Rich Pelagic Aggregates (Iron Snow). Microbiology Resource Announcements, 2021, 10, e0010221.	0.3	0
3	Insights into Autotrophic Activities and Carbon Flow in Iron-Rich Pelagic Aggregates (Iron Snow). Microorganisms, 2021, 9, 1368.	1.6	2
4	Deciphering microbial mechanisms underlying soil organic carbon storage in a wheat-maize rotation system. Science of the Total Environment, 2021, 788, 147798.	3.9	23
5	Draft Genome Sequence of Pseudomonas sp. Strain FEN, Isolated from the Fe- and Organic Matter-Rich Schlöppnerbrunnen Fen. Microbiology Resource Announcements, 2021, 10, .	0.3	2
6	Genomeâ€inferred spatioâ€temporal resolution of an uncultivated Roizmanbacterium reveals its ecological preferences in groundwater. Environmental Microbiology, 2020, 22, 726-737.	1.8	31
7	Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms. ISME Journal, 2020, 14, 2675-2690.	4.4	14
8	Molecular Mechanisms Underpinning Aggregation in Acidiphilium sp. C61 Isolated from Iron-Rich Pelagic Aggregates. Microorganisms, 2020, 8, 314.	1.6	5
9	Draft Genome Sequence of Sideroxydans sp. Strain CL21, an Fe(II)-Oxidizing Bacterium. Microbiology Resource Announcements, 2020, 9, .	0.3	9
10	Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. Science of the Total Environment, 2019, 646, 972-988.	3.9	52
11	Predominance of Cand. Patescibacteria in Groundwater Is Caused by Their Preferential Mobilization From Soils and Flourishing Under Oligotrophic Conditions. Frontiers in Microbiology, 2019, 10, 1407.	1.5	160
12	Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biology and Biochemistry, 2019, 132, 131-142.	4.2	28
13	Lanthanide-Dependent Methylotrophs of the Family <i>Beijerinckiaceae</i> : Physiological and Genomic Insights. Applied and Environmental Microbiology, 2019, 86, .	1.4	19
14	Biogeochemical Regimes in Shallow Aquifers Reflect the Metabolic Coupling of the Elements Nitrogen, Sulfur, and Carbon. Applied and Environmental Microbiology, 2019, 85, .	1.4	47
15	Metatranscriptomics reveals the hydrolytic potential of peat-inhabiting Planctomycetes. Antonie Van Leeuwenhoek, 2018, 111, 801-809.	0.7	30
16	Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome, 2018, 6, 169.	4.9	54
17	Phylogenetic and Structural Comparisons of the Three Types of Methyl Coenzyme M Reductase from Methanococcales and Methanobacteriales. Journal of Bacteriology, 2017, 199, .	1.0	36
18	Short-Term Exposure of Paddy Soil Microbial Communities to Salt Stress Triggers Different Transcriptional Responses of Key Taxonomic Groups. Frontiers in Microbiology, 2017, 8, 400.	1.5	19

#	Article	IF	CITATIONS
19	Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags. Frontiers in Microbiology, 2017, 8, 1023.	1.5	32
20	Ferrihydrite-associated organic matter (OM) stimulates reduction by & p;lt;i& p;st;Shewanella oneidensis& p;lt;/i& p;gt; MR-1 and a complex microbial consortia. Biogeosciences, 2017, 14, 5171-5188.	1.3	44
21	The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathogens, 2016, 12, e1005697.	2.1	65
22	Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Molecular Ecology, 2016, 25, 4818-4835.	2.0	60
23	Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil. Environmental Microbiology, 2016, 18, 2825-2842.	1.8	72
24	Permanent Managed Grassland at Future Climate Change: Is There a Connection between GHG Emission and Composition of Plant and Microbial Communities?. Procedia Environmental Sciences, 2015, 29, 156-157.	1.3	3
25	Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil. Frontiers in Microbiology, 2015, 6, 379.	1.5	47
26	Permanent draft genome of Rhodopirellula rubra SWK7. Marine Genomics, 2014, 13, 11-12.	0.4	6
27	Permanent draft genome of Rhodopirellula sallentina SM41. Marine Genomics, 2014, 13, 17-18.	0.4	5
28	Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers. Applied and Environmental Microbiology, 2014, 80, 5944-5954.	1.4	27
29	Permanent draft genomes of the Rhodopirellula maiorica strain SM1. Marine Genomics, 2014, 13, 19-20.	0.4	5
30	Permanent draft genomes of the two Rhodopirellula europaea strains 6C and SH398. Marine Genomics, 2014, 13, 15-16.	0.4	4
31	Permanent draft genomes of the three Rhodopirellula baltica strains SH28, SWK14 and WH47. Marine Genomics, 2014, 13, 13-14.	0.4	3
32	Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Marine Genomics, 2013, 9, 51-61.	0.4	145
33	Microbial diversity-ecosystem function relationships across environmental gradients. Research Ideas and Outcomes, 0, 6, .	1.0	8