Blair M Mckenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4472993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206, 107-117.	7.3	805
2	Matching roots to their environment. Annals of Botany, 2013, 112, 207-222.	2.9	247
3	Root hairs aid soil penetration by anchoring the root surface to pore walls. Journal of Experimental Botany, 2016, 67, 1071-1078.	4.8	75
4	Stabilisation of soil against wind erosion by six saprotrophic fungi. Soil Biology and Biochemistry, 2012, 50, 134-141.	8.8	73
5	Visual soil evaluation: A summary of some applications and potential developments for agriculture. Soil and Tillage Research, 2017, 173, 114-124.	5.6	72
6	Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecological Engineering, 2014, 71, 458-465.	3.6	71
7	Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs. Ecological Engineering, 2013, 61, 706-714.	3.6	61
8	Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats: Using soil compaction as an example. Soil and Tillage Research, 2013, 132, 56-68.	5.6	50
9	Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry, 2013, 60, 195-201.	8.8	44
10	Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or or or or or or or or or and Environment, 2014, 189, 171-180.	5.3	41
11	Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices. Soil and Tillage Research, 2020, 200, 104632.	5.6	41
12	Water relations of white clover (Trifolium repens L.) in a drying soil, as a function of phosphorus supply and defoliation frequency. Australian Journal of Agricultural Research, 1997, 48, 675.	1.5	35
13	Root–soil friction: quantification provides evidence for measurable benefits for manipulation of rootâ€tip traits. Plant, Cell and Environment, 2013, 36, 1085-1092.	5.7	35
14	Phosphorus concentrations in the leaves of defoliated white clover affect abscisic acid formation and transpiration in drying soil. New Phytologist, 2000, 146, 249-259.	7.3	34
15	Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 2013, 369, 467-477.	3.7	34
16	Quantitative image analysis of earthworm-mediated soil displacement. Biology and Fertility of Soils, 2009, 45, 821-828.	4.3	22
17	Within‥ear Changes in Hydraulic Properties of a Shallow Entisol in Farmland and Forestland. Vadose Zone Journal, 2015, 14, 1-15.	2.2	20
18	Kelp (Laminaria digitata) increases germination and affects rooting and plant vigour in crops and native plants from an arable grassland in the Outer Hebrides, Scotland. Journal of Coastal Conservation, 2010, 14, 239-247.	1.6	17

BLAIR M MCKENZIE

#	Article	IF	CITATIONS
19	Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment. Agronomy, 2014, 4, 242-278.	3.0	16
20	Assessing the significance of soil erosion for arable weed seedbank diversity in agro-ecosystems. Progress in Physical Geography, 2013, 37, 622-641.	3.2	13
21	Importance of short-term temporal variability in soil physical properties for soil water modelling under different tillage practices. Soil and Tillage Research, 2021, 213, 105132.	5.6	11
22	Moiré as a low-cost, robust, optical-technique to quantify soil surface condition. Soil and Tillage Research, 2016, 158, 147-155.	5.6	8
23	Over winter cover crops provide yield benefits for spring barley and maintain soil health in northern Europe. European Journal of Agronomy, 2021, 130, 126363.	4.1	8
24	Agricultural Landscapes: History, Status and Challenges. Innovations in Landscape Research, 2021, , 3-54.	0.4	7
25	Landscapes, Their Exploration and Utilisation: Status and Trends of Landscape Research. Innovations in Landscape Research, 2019, , 105-164.	0.4	6
26	Soil Physical Quality. Encyclopedia of Earth Sciences Series, 2011, , 770-777.	0.1	6
27	Spatial trends in the wind abrasion resistance of cultivated machair soil, South Uist, Scottish Outer Hebrides. Catena, 2015, 135, 1-10.	5.0	4
28	Influence of Tillage Practices, Organic Manures and Extrinsic Factors on β-Glucosidase Activity: The Final Step of Cellulose Hydrolysis. Soil Systems, 2018, 2, 21.	2.6	4
29	Identifying Spring Barley Cultivars with Differential Response to Tillage. Agronomy, 2020, 10, 686.	3.0	4
30	Optimizing Agricultural Landscapes: Measures Towards Prosperity and Sustainability. Innovations in Landscape Research, 2021, , 91-130.	0.4	2
31	Exploring Agricultural Landscapes: Recent Progress and Opportunities for Eurasia. Innovations in Landscape Research, 2021, , 55-90.	0.4	1
32	Understanding Soils: Their Functions, Use and Degradation. Innovations in Landscape Research, 2022, , 1-42.	0.4	1
33	Optical and portable equipment for characterizing soil roughness. Smart Agricultural Technology, 2023, 3, 100062.	5.4	1