
## Zhangquan Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4472913/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Reversible and Higher-Rate Li-O <sub>2</sub> Battery. Science, 2012, 337, 563-566.                                                                                                                                   | 12.6 | 1,750     |
| 2  | Reactions in the Rechargeable Lithium–O <sub>2</sub> Battery with Alkyl Carbonate Electrolytes.<br>Journal of the American Chemical Society, 2011, 133, 8040-8047.                                                     | 13.7 | 1,157     |
| 3  | The Carbon Electrode in Nonaqueous Li–O <sub>2</sub> Cells. Journal of the American Chemical Society, 2013, 135, 494-500.                                                                                              | 13.7 | 1,145     |
| 4  | Charging a Li–O2 battery using a redox mediator. Nature Chemistry, 2013, 5, 489-494.                                                                                                                                   | 13.6 | 795       |
| 5  | A stable cathode for the aprotic Li–O2Âbattery. Nature Materials, 2013, 12, 1050-1056.                                                                                                                                 | 27.5 | 677       |
| 6  | Oxygen Reactions in a Nonâ€Aqueous Li <sup>+</sup> Electrolyte. Angewandte Chemie - International<br>Edition, 2011, 50, 6351-6355.                                                                                     | 13.8 | 518       |
| 7  | Nâ€Đoping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance<br>Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.                                          | 14.9 | 392       |
| 8  | Li–O <sub>2</sub> Battery with a Dimethylformamide Electrolyte. Journal of the American Chemical<br>Society, 2012, 134, 7952-7957.                                                                                     | 13.7 | 348       |
| 9  | Eutecticâ€Đerived Mesoporous Niâ€Feâ€O Nanowire Network Catalyzing Oxygen Evolution and Overall<br>Water Splitting. Advanced Energy Materials, 2018, 8, 1701347.                                                       | 19.5 | 281       |
| 10 | Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nature Communications, 2020, 11, 1088.                                                                                                       | 12.8 | 278       |
| 11 | Three-Dimensional Ordered Macroporous Metal–Organic Framework Single Crystal-Derived<br>Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano<br>Letters, 2019, 19, 4965-4973.  | 9.1  | 246       |
| 12 | Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing<br>Nitrogen-Doped Porous Hollow Carbon Nanofibers. Nano Letters, 2019, 19, 1351-1358.                                      | 9.1  | 239       |
| 13 | Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018, 2, 1674-1689.                                                                                                 | 24.0 | 212       |
| 14 | Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with<br>Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6,<br>6335-6342. | 11.2 | 210       |
| 15 | Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Đoped Carbon: Superior<br>Potassiumâ€ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32,<br>e2000958.             | 21.0 | 192       |
| 16 | Achilles' Heel of Lithium–Air Batteries: Lithium Carbonate. Angewandte Chemie - International Edition,<br>2018, 57, 3874-3886.                                                                                         | 13.8 | 186       |
| 17 | A Dealloying Synthetic Strategy for Nanoporous Bismuth–Antimony Anodes for Sodium Ion Batteries.<br>ACS Nano, 2018, 12, 3568-3577.                                                                                     | 14.6 | 167       |
| 18 | Reversibility of Noble Metal-Catalyzed Aprotic Li-O <sub>2</sub> Batteries. Nano Letters, 2015, 15, 8084-8090.                                                                                                         | 9.1  | 165       |

Zhangquan Peng

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Verifying the Rechargeability of Li O <sub>2</sub> Batteries on Working Cathodes of Ni Nanoparticles<br>Highly Dispersed on Nâ€Doped Graphene. Advanced Science, 2018, 5, 1700567.                                                                                             | 11.2 | 159       |
| 20 | The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.                                                                                                                                                                                     | 2.8  | 158       |
| 21 | An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angewandte Chemie - International Edition, 2018, 57, 1898-1902.                                                                                                                                                       | 13.8 | 154       |
| 22 | Potential-Dependent Generation of O <sub>2</sub> <sup>–</sup> and LiO <sub>2</sub> and Their<br>Critical Roles in O <sub>2</sub> Reduction to Li <sub>2</sub> O <sub>2</sub> in Aprotic<br>Li–O <sub>2</sub> Batteries. Journal of Physical Chemistry C, 2016, 120, 3690-3698. | 3.1  | 149       |
| 23 | Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic<br>Lithiumâ€O <sub>2</sub> Batteries at the Stage of Sudden Death. Angewandte Chemie - International<br>Edition, 2016, 55, 5201-5205.                                                      | 13.8 | 147       |
| 24 | A Highâ€Performance Li–O <sub>2</sub> Battery with a Strongly Solvating Hexamethylphosphoramide<br>Electrolyte and a LiPONâ€Protected Lithium Anode. Advanced Materials, 2017, 29, 1701568.                                                                                    | 21.0 | 146       |
| 25 | A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.                                                                                                                         | 12.8 | 138       |
| 26 | Heteroatom-doped carbon materials and their composites as electrocatalysts for CO <sub>2</sub><br>reduction. Journal of Materials Chemistry A, 2018, 6, 18782-18793.                                                                                                           | 10.3 | 136       |
| 27 | Amorphous Li <sub>2</sub> O <sub>2</sub> : Chemical Synthesis and Electrochemical Properties.<br>Angewandte Chemie - International Edition, 2016, 55, 10717-10721.                                                                                                             | 13.8 | 135       |
| 28 | Progress and Perspective: MXene and MXeneâ€Based Nanomaterials for Highâ€Performance Energy Storage<br>Devices. Advanced Electronic Materials, 2021, 7, 2000967.                                                                                                               | 5.1  | 122       |
| 29 | Unraveling the Nature of Excellent Potassium Storage in Smallâ€Molecule Se@Peapodâ€Like Nâ€Doped<br>Carbon Nanofibers. Advanced Materials, 2020, 32, e2003879.                                                                                                                 | 21.0 | 104       |
| 30 | Laser-Assisted Synthesis of Auâ^'Ag Alloy Nanoparticles in Solution. Journal of Physical Chemistry B, 2006, 110, 2549-2554.                                                                                                                                                    | 2.6  | 101       |
| 31 | Highâ€Capacity and Highâ€Rate Discharging of a Coenzyme Q <sub>10</sub> â€Catalyzed Li–O <sub>2</sub><br>Battery. Advanced Materials, 2018, 30, 1705571.                                                                                                                       | 21.0 | 100       |
| 32 | NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries.<br>Journal of Materials Chemistry A, 2014, 2, 20022-20029.                                                                                                                      | 10.3 | 90        |
| 33 | Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy, 2018, 54, 349-359.                                                                                                                         | 16.0 | 83        |
| 34 | Hierarchical Porous Carbon Spheres for Highâ€Performance Na–O <sub>2</sub> Batteries. Advanced<br>Materials, 2017, 29, 1606816.                                                                                                                                                | 21.0 | 81        |
| 35 | Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable<br>electrolyte. InformaÄnÄ-MateriÄ¡ly, 2020, 2, 984-992.                                                                                                               | 17.3 | 81        |
| 36 | Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes<br>for magnesium-ion batteries. Energy Storage Materials, 2018, 14, 351-360.                                                                                                   | 18.0 | 80        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Direct Detection of the Superoxide Anion as a Stable Intermediate in the Electroreduction of Oxygen<br>in a Nonâ€Aqueous Electrolyte Containing Phenol as a Proton Source. Angewandte Chemie -<br>International Edition, 2015, 54, 8165-8168.   | 13.8 | 78        |
| 38 | A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 1092-1098.                                                                       | 10.3 | 77        |
| 39 | A Carbon―and Binderâ€Free Nanostructured Cathode for Highâ€Performance Nonaqueous<br>Liâ€O <sub>2</sub> Battery. Advanced Science, 2015, 2, 1500092.                                                                                            | 11.2 | 76        |
| 40 | The Salt Matters: Enhanced Reversibility of Li–O <sub>2</sub> Batteries with a<br>Li[(CF <sub>3</sub> SO <sub>2</sub> )( <i>n</i> <sub>4</sub> F <sub>9</sub> SO <sub>2</sub> )N]â€Based<br>Electrolyte. Advanced Materials, 2018, 30, 1704841. | 21.0 | 76        |
| 41 | Pd–PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition. Journal of Physical Chemistry C, 2018, 122, 2081-2088.                                                                                                | 3.1  | 75        |
| 42 | Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow<br>Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry. Small, 2019,<br>15, e1902491.                              | 10.0 | 74        |
| 43 | Micelle-Assisted One-Pot Synthesis of Water-Soluble Polyanilineâ^'Gold Composite Particles. Langmuir, 2006, 22, 10915-10918.                                                                                                                    | 3.5  | 72        |
| 44 | Co <sub>9</sub> S <sub>8</sub> @carbon porous nanocages derived from a metal–organic framework:<br>a highly efficient bifunctional catalyst for aprotic Li–O <sub>2</sub> batteries. Journal of Materials<br>Chemistry A, 2018, 6, 8595-8603.   | 10.3 | 71        |
| 45 | Nanoporous Iridium-Based Alloy Nanowires as Highly Efficient Electrocatalysts Toward Acidic Oxygen<br>Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 39728-39736.                                                            | 8.0  | 71        |
| 46 | LiO <sub>2</sub> : Cryosynthesis and Chemical/Electrochemical Reactivities. Journal of Physical Chemistry Letters, 2017, 8, 2334-2338.                                                                                                          | 4.6  | 70        |
| 47 | Advanced Lithium Metal–Carbon Nanotube Composite Anode for High-Performance Lithium–Oxygen<br>Batteries. Nano Letters, 2019, 19, 6377-6384.                                                                                                     | 9.1  | 70        |
| 48 | A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage<br>Materials, 2018, 13, 247-256.                                                                                                                    | 18.0 | 68        |
| 49 | Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles.<br>ACS Nano, 2019, 13, 12987-12995.                                                                                                          | 14.6 | 67        |
| 50 | Orthorhombic Cobalt Ditelluride with Te Vacancy Defects Anchoring on Elastic MXene Enables<br>Efficient Potassiumâ€lon Storage. Advanced Materials, 2021, 33, e2100272.                                                                         | 21.0 | 66        |
| 51 | Unlocking the energy capabilities of micron-sized LiFePO4. Nature Communications, 2015, 6, 7898.                                                                                                                                                | 12.8 | 65        |
| 52 | Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms. Nano Research, 2017, 10, 2584-2598.                                                                                        | 10.4 | 65        |
| 53 | Monodispersed Ru Nanoparticles Functionalized Graphene Nanosheets as Efficient Cathode Catalysts<br>for O <sub>2</sub> -Assisted Li–CO <sub>2</sub> Battery. ACS Omega, 2017, 2, 9280-9286.                                                     | 3.5  | 63        |
| 54 | [001] preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior<br>lithium storage. Journal of Materials Chemistry A, 2015, 3, 17811-17819.                                                                      | 10.3 | 61        |

Zhangquan Peng

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Probing Lithium Carbonate Formation in Trace-O <sub>2</sub> -Assisted Aprotic Li-CO <sub>2</sub><br>Batteries Using in Situ Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters,<br>2019, 10, 322-328.          | 4.6  | 61        |
| 56 | Decomposing lithium carbonate with a mobile catalyst. Nano Energy, 2017, 36, 390-397.                                                                                                                                                  | 16.0 | 60        |
| 57 | Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study.<br>Journal of Power Sources, 2018, 379, 1-9.                                                                                        | 7.8  | 60        |
| 58 | Unveiling the Complex Effects of H <sub>2</sub> O on Discharge–Recharge Behaviors of Aprotic<br>Lithium–O <sub>2</sub> Batteries. Journal of Physical Chemistry Letters, 2018, 9, 3333-3339.                                           | 4.6  | 60        |
| 59 | Understanding oxygen electrochemistry in aprotic Li O2 batteries. Green Energy and Environment, 2017, 2, 186-203.                                                                                                                      | 8.7  | 59        |
| 60 | A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Applied Catalysis B: Environmental, 2019, 259, 118040.                                                           | 20.2 | 59        |
| 61 | Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Research, 2019, 12, 2281-2287.                                                                | 10.4 | 59        |
| 62 | A Highâ€Performance Carbonateâ€Free Lithium   Garnet Interface Enabled by a Trace Amount of Sodium.<br>Advanced Materials, 2020, 32, e2000575.                                                                                         | 21.0 | 58        |
| 63 | Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li–O2<br>batteries. Nano Energy, 2016, 28, 486-494.                                                                                          | 16.0 | 56        |
| 64 | Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine<br>nanoporous platinum–copper alloy: Experiment and density functional theory calculation. Journal of<br>Power Sources, 2015, 279, 334-344. | 7.8  | 55        |
| 65 | Redox mediators for high-performance lithium–oxygen batteries. National Science Review, 2022, 9,<br>nwac040.                                                                                                                           | 9.5  | 54        |
| 66 | Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows. Journal of Energy Chemistry, 2020, 44, 138-146.                                                            | 12.9 | 53        |
| 67 | Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPC Asia Materials, 2016, 8, e286-e286.                                                       | 7.9  | 52        |
| 68 | Composition- and size-modulated porous bismuth–tin biphase alloys as anodes for advanced magnesium ion batteries. Nanoscale, 2019, 11, 15279-15288.                                                                                    | 5.6  | 49        |
| 69 | Thermoresponsive polymer-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 2008, 319, 175-181.                                                                                                                | 9.4  | 48        |
| 70 | An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angewandte Chemie, 2018, 130, 1916-1920.                                                                                                                                      | 2.0  | 43        |
| 71 | Rechargeable Aluminium–Sulfur Battery with Improved Electrochemical Performance by<br>Cobaltâ€Containing Electrocatalyst. Angewandte Chemie - International Edition, 2020, 59, 22963-22967.                                            | 13.8 | 43        |
| 72 | A New Defectâ€Rich CoGa Layered Double Hydroxide as Efficient and Stable Oxygen Evolution<br>Electrocatalyst. Small Methods, 2019, 3, 1800286.                                                                                         | 8.6  | 41        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Covalent Sidewall Functionalization of Carbon Nanotubes by a "Formationâ^'Degradation―Approach.<br>Chemistry of Materials, 2008, 20, 6068-6075.                                                                                   | 6.7  | 39        |
| 74 | Formation of a Supported Hybrid Bilayer Membrane on Gold:Â A Sterically Enhanced Hydrophobic<br>Effect. Langmuir, 2002, 18, 4834-4839.                                                                                            | 3.5  | 38        |
| 75 | Influence of Intense Pulsed Laser Irradiation on Optical and Morphological Properties of Gold<br>Nanoparticle Aggregates Produced by Surface Acidâ^Base Reactions. Langmuir, 2005, 21, 4249-4253.                                 | 3.5  | 38        |
| 76 | Photofragmentation of Phase-Transferred Gold Nanoparticles by Intense Pulsed Laser Light. Journal of Physical Chemistry B, 2005, 109, 15735-15740.                                                                                | 2.6  | 38        |
| 77 | Hierarchically nanoporous nickel-based actuators with giant reversible strain and ultrahigh work density. Journal of Materials Chemistry C, 2016, 4, 45-52.                                                                       | 5.5  | 38        |
| 78 | Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie - International<br>Edition, 2018, 57, 9906-9910.                                                                                                | 13.8 | 38        |
| 79 | Tailoring P2/P3 Biphases of Layered Na <i><sub>x</sub></i> MnO <sub>2</sub> by Co Substitution for<br>Highâ€Performance Sodiumâ€ion Battery. Small, 2021, 17, e2007103.                                                           | 10.0 | 38        |
| 80 | Amorphous Li <sub>2</sub> O <sub>2</sub> : Chemical Synthesis and Electrochemical Properties.<br>Angewandte Chemie, 2016, 128, 10875-10879.                                                                                       | 2.0  | 37        |
| 81 | Tackling Grand Challenges of the 21st Century with Electroanalytical Chemistry. Journal of the American Chemical Society, 2018, 140, 10629-10638.                                                                                 | 13.7 | 37        |
| 82 | Incorporation of surface-derivatized gold nanoparticles into electrochemically generated polymer films. Electrochemistry Communications, 2002, 4, 210-213.                                                                        | 4.7  | 36        |
| 83 | Strongly coupled Te-SnS2/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage. Journal of Energy Chemistry, 2021, 61, 416-424.                                                        | 12.9 | 36        |
| 84 | Scalable Fabrication of Core–Shell Sb@Co(OH)2 Nanosheet Anodes for Advanced Sodium-Ion Batteries<br>via Magnetron Sputtering. ACS Nano, 2018, 12, 11678-11688.                                                                    | 14.6 | 35        |
| 85 | Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3,<br>1083-1109.                                                                                                                | 17.3 | 35        |
| 86 | Core‧hell Structured NiCo <sub>2</sub> O <sub>4</sub> @FeOOH Nanowire Arrays as Bifunctional<br>Electrocatalysts for Efficient Overall Water Splitting. ChemCatChem, 2018, 10, 4119-4125.                                         | 3.7  | 34        |
| 87 | Promoting Solution Discharge of Li–O <sub>2</sub> Batteries with Immobilized Redox Mediators.<br>Journal of Physical Chemistry Letters, 2018, 9, 5915-5920.                                                                       | 4.6  | 33        |
| 88 | (CH3)3Si-N[(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode. Journal of Power<br>Sources, 2018, 400, 225-231.                                                                                                | 7.8  | 33        |
| 89 | Deciphering CO <sub>2</sub> Reduction Reaction Mechanism in Aprotic Li–CO <sub>2</sub> Batteries<br>using <i>In Situ</i> Vibrational Spectroscopy Coupled with Theoretical Calculations. ACS Energy<br>Letters, 2022, 7, 624-631. | 17.4 | 33        |
| 90 | Oriented polyoxometalate–polycation multilayers on a carbon substrate. Journal of Materials<br>Chemistry, 2000, 10, 2727-2733.                                                                                                    | 6.7  | 32        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | â€~Painting' nanostructured metals—playing with liquid metal. Nanoscale Horizons, 2018, 3, 408-416.                                                                                                                                                    | 8.0  | 32        |
| 92  | Identifying the anionic redox activity in cation-disordered<br>Li <sub>1.25</sub> Nb <sub>0.25</sub> Fe <sub>0.50</sub> O <sub>2</sub> /C oxide cathodes for Li-ion<br>batteries. Journal of Materials Chemistry A, 2020, 8, 5115-5127.                | 10.3 | 32        |
| 93  | Conformation change of horseradish peroxidase in lipid membrane. Chemistry and Physics of Lipids, 2002, 120, 119-129.                                                                                                                                  | 3.2  | 31        |
| 94  | Oxygen electrochemistry in Liâ€O <sub>2</sub> batteries probed by in situ surfaceâ€enhanced Raman spectroscopy. SusMat, 2021, 1, 345-358.                                                                                                              | 14.9 | 31        |
| 95  | Revealing the Sulfur Redox Paths in a Li–S Battery by an In Situ Hyphenated Technique of<br>Electrochemistry and Mass Spectrometry. Advanced Materials, 2022, 34, e2106618.                                                                            | 21.0 | 31        |
| 96  | Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium<br>storage. Nano Research, 2019, 12, 801-808.                                                                                                       | 10.4 | 30        |
| 97  | One-Pot Synthesis of Carbon Nanotube-Polyaniline-Gold Nanoparticle and Carbon Nanotube-Gold<br>Nanoparticle Composites by Using Aromatic Amine Chemistry. Langmuir, 2008, 24, 8971-8975.                                                               | 3.5  | 29        |
| 98  | Polyphenylene Wrapped Sulfur/Multi-Walled Carbon Nano-Tubes via Spontaneous Grafting of<br>Diazonium Salt for Improved Electrochemical Performance of Lithium-Sulfur Battery. Electrochimica<br>Acta, 2015, 165, 136-141.                              | 5.2  | 29        |
| 99  | Kinetics of the CO <sub>2</sub> reduction reaction in aprotic Li–CO <sub>2</sub> batteries: a model study. Journal of Materials Chemistry A, 2021, 9, 3290-3296.                                                                                       | 10.3 | 29        |
| 100 | Formation of a Self-Assembled Monolayer of 2-Mercapto-3-n-octylthiophene on Gold. Langmuir, 2001, 17, 4904-4909.                                                                                                                                       | 3.5  | 28        |
| 101 | Preparation of a phosphopolyoxomolybdate P2Mo18O626â^ doped polypyrrole modified electrode and its catalytic properties. Journal of Electroanalytical Chemistry, 2004, 566, 63-71.                                                                     | 3.8  | 27        |
| 102 | A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.                                                                                                                                 | 10.3 | 26        |
| 103 | Immobilization of the Nanoparticle Monolayer onto Self-Assembled Monolayers by Combined Sterically Enhanced Hydrophobic and Electrophoretic Forces. Langmuir, 2004, 20, 5-10.                                                                          | 3.5  | 25        |
| 104 | Surface Charge Influence on the Surface Plasmon Absorbance of Electroactive Thiol-Protected Gold<br>Nanoparticles. Langmuir, 2004, 20, 2519-2522.                                                                                                      | 3.5  | 24        |
| 105 | Mechanistic origin of low polarization in aprotic Na–O <sub>2</sub> batteries. Physical Chemistry<br>Chemical Physics, 2017, 19, 12375-12383.                                                                                                          | 2.8  | 24        |
| 106 | Probing the Reaction Interface in Li–Oxygen Batteries Using Dynamic Electrochemical Impedance<br>Spectroscopy: Discharge–Charge Asymmetry in Reaction Sites and Electronic Conductivity. Journal of<br>Physical Chemistry Letters, 2018, 9, 3403-3408. | 4.6  | 24        |
| 107 | Understanding the Reaction Interface in Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2019, 2, 37-48.                                                                                                                                            | 4.7  | 23        |
| 108 | Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction<br>with Stable Quinone in Li–O <sub>2</sub> Batteries. ACS Applied Materials & Interfaces, 2020, 12,<br>10607-10615.                                   | 8.0  | 23        |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Direct monitoring of trace water in Li-ion batteries using <i>operando</i> fluorescence spectroscopy. Chemical Science, 2018, 9, 231-237.                                                                                                                                                                         | 7.4  | 22        |
| 110 | Taming Interfacial Instability in Lithium–Oxygen Batteries: A Polymeric Ionic Liquid Electrolyte<br>Solution. Advanced Energy Materials, 2019, 9, 1901967.                                                                                                                                                        | 19.5 | 22        |
| 111 | A Novel Zwitterionic Ionic Liquid-Based Electrolyte for More Efficient and Safer Lithium–Sulfur<br>Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11635-11642.                                                                                                                                          | 8.0  | 22        |
| 112 | Engineering Solid Electrolyte Interphase in Lithium Metal Batteries by Employing an Ionic Liquid Ether<br>Double-Solvent Electrolyte with<br>Li[(CF <sub>3</sub> SO <sub>2</sub> )( <i>n</i> -C <sub>4</sub> F <sub>9</sub> SO <sub>2</sub> )N] as the<br>Salt. ACS Applied Energy Materials, 2018, 1, 4426-4431. | 5.1  | 21        |
| 113 | Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic<br>Lithiumâ€O <sub>2</sub> Batteries at the Stage of Sudden Death. Angewandte Chemie, 2016, 128, 5287-5291.                                                                                                                   | 2.0  | 20        |
| 114 | Li <sub>2</sub> CO <sub>3</sub> : Die Achillesferse von Lithium‣uftâ€Batterien. Angewandte Chemie, 2018,<br>130, 3936-3949.                                                                                                                                                                                       | 2.0  | 20        |
| 115 | Understanding the boosted sodium storage behavior of a nanoporous bismuth-nickel anode using <i>operando</i> X-ray diffraction and density functional theory calculations. Journal of Materials Chemistry A, 2019, 7, 13602-13613.                                                                                | 10.3 | 20        |
| 116 | Understanding the Reaction Interface in Lithium-Oxygen Batteries. Batteries and Supercaps, 2019, 2, 5-5.                                                                                                                                                                                                          | 4.7  | 20        |
| 117 | Electrochemistry and spectroscopy study on the interaction of microperoxidase-11 with lipid membrane. Biophysical Chemistry, 2001, 94, 165-173.                                                                                                                                                                   | 2.8  | 19        |
| 118 | Direct Detection of the Superoxide Anion as a Stable Intermediate in the Electroreduction of Oxygen<br>in a Nonâ€Aqueous Electrolyte Containing Phenol as a Proton Source. Angewandte Chemie, 2015, 127,<br>8283-8286.                                                                                            | 2.0  | 19        |
| 119 | Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell. Journal of<br>Power Sources, 2018, 384, 80-85.                                                                                                                                                                            | 7.8  | 19        |
| 120 | Li 2 O 2 oxidation: the charging reaction in the aprotic Li-O 2 batteries. Science Bulletin, 2015, 60, 1227-1234.                                                                                                                                                                                                 | 9.0  | 18        |
| 121 | Liquid-like Poly(ionic liquid) as Electrolyte for Thermally Stable Lithium-Ion Battery. ACS Omega, 2018,<br>3, 10564-10571.                                                                                                                                                                                       | 3.5  | 18        |
| 122 | The origin of potential rise during charging of Li-O2 batteries. Science China Chemistry, 2017, 60,<br>1527-1532.                                                                                                                                                                                                 | 8.2  | 17        |
| 123 | Promoting defective-Li <sub>2</sub> O <sub>2</sub> formation <i>via</i> Na doping for<br>Li–O <sub>2</sub> batteries with low charge overpotentials. Journal of Materials Chemistry A, 2019, 7,<br>10389-10396.                                                                                                   | 10.3 | 17        |
| 124 | Identification of a better charge redox mediator for lithium–oxygen batteries. Energy Storage<br>Materials, 2020, 25, 795-800.                                                                                                                                                                                    | 18.0 | 17        |
| 125 | Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid<br>Li–O <sub>2</sub> Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39157-39164.                                                                                                                                 | 8.0  | 17        |
| 126 | Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials<br>for Li-O2 batteries. Journal of Energy Chemistry, 2021, 55, 55-61.                                                                                                                                            | 12.9 | 16        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| 127 | Direct <i>In Situ</i> Spectroscopic Evidence for Solution-Mediated Oxygen Reduction Reaction<br>Intermediates in Aprotic Lithium–Oxygen Batteries. Nano Letters, 2022, 22, 501-507.                                                                  | 9.1  | 16              |
| 128 | Co-assembly of ferrocene-terminated and alkylthiophene thiols on gold and its redox chemistry modulated by surfactant adsorption. Journal of Electroanalytical Chemistry, 2004, 563, 291-298.                                                        | 3.8  | 15              |
| 129 | Relieving the "Sudden Death―of Li–O <sub>2</sub> Batteries by Grafting an Antifouling Film on<br>Cathode Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 14753-14758.                                                                        | 8.0  | 15              |
| 130 | Rechargeable Aluminium–Sulfur Battery with Improved Electrochemical Performance by<br>Cobaltâ€Containing Electrocatalyst. Angewandte Chemie, 2020, 132, 23163-23167.                                                                                 | 2.0  | 15              |
| 131 | Identifying a Stable Counter/Reference Electrode for the Study of Aprotic<br>Na–O <sub>2</sub> Batteries. Journal of the Electrochemical Society, 2016, 163, A1270-A1274.                                                                            | 2.9  | 14              |
| 132 | Spectroscopic Identification of the Au–C Bond Formation upon Electroreduction of an Aryl<br>Diazonium Salt on Gold. Langmuir, 2016, 32, 11514-11519.                                                                                                 | 3.5  | 14              |
| 133 | Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie, 2018, 130, 10054-10058.                                                                                                                                           | 2.0  | 14              |
| 134 | In Situ Imaging Polysulfides Electrochemistry of Li-S Batteries in a Hollow Carbon Nanotubule Wet<br>Electrochemical Cell. ACS Applied Materials & Interfaces, 2020, 12, 55971-55981.                                                                | 8.0  | 14              |
| 135 | Phase control of ultrafine FeSe nanocrystals in a N-doped carbon matrix for highly efficient and stable oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 3464-3471.                                                             | 10.3 | 13              |
| 136 | Interrogating Lithium–Oxygen Battery Reactions and Chemistry with Isotope-Labeling Techniques: A<br>Mini Review. Energy & Fuels, 2021, 35, 4743-4750.                                                                                                | 5.1  | 13              |
| 137 | Deciphering the Enigma of Li <sub>2</sub> CO <sub>3</sub> Oxidation Using a Solid-State Li–Air Battery<br>Configuration. ACS Applied Materials & Interfaces, 2021, 13, 14321-14326.                                                                  | 8.0  | 13              |
| 138 | <i>In situ</i> imaging electrocatalytic CO <sub>2</sub> reduction and evolution reactions in all-solid-state Li–CO <sub>2</sub> nanobatteries. Nanoscale, 2020, 12, 23967-23974.                                                                     | 5.6  | 12              |
| 139 | Reversible Cycling of Graphite Electrodes in Propylene Carbonate Electrolytes Enabled by Ethyl<br>Isothiocyanate. ACS Applied Materials & Interfaces, 2021, 13, 26023-26033.                                                                         | 8.0  | 12              |
| 140 | Surface Electronegativity as an Activity Descriptor to Screen Oxygen Evolution Reaction Catalysts of<br>Li–O <sub>2</sub> Battery. ACS Applied Materials & Interfaces, 2020, 12, 27166-27175.                                                        | 8.0  | 12              |
| 141 | Hunting the Culprits: Reactive Oxygen Species in Aprotic Lithium–Oxygen Batteries. Journal of Physical<br>Chemistry C, 2022, 126, 1243-1255.                                                                                                         | 3.1  | 11              |
| 142 | Understanding oxygen reactions in aprotic Li-O <sub>2</sub> batteries. Chinese Physics B, 2016, 25, 018204.                                                                                                                                          | 1.4  | 9               |
| 143 | Decisive Intermediates Responsible for the Carbonaceous Products of CO <sub>2</sub><br>Electroâ€reduction on Nitrogenâ€Đoped sp <sup>2</sup> Nanocarbon Catalysts in NaHCO <sub>3</sub><br>Aqueous Electrolyte. ChemElectroChem, 2017, 4, 1274-1278. | 3.4  | 9               |
|     | Interfacial Barrier of Ion Transport in Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 72 Td (oxide)–Li <sub< td=""><td>&gt;7</td><td>La<sub>3</sub></td></sub<>                                                                                | >7   | La <sub>3</sub> |
| 144 | Illustrated by <sup>6</sup> Li-Tracer Nuclear Magnetic Resonance Spectroscopy. Journal of Physical<br>Chemistry Letters, 2022, 13, 1500-1505.                                                                                                        | 4.6  | 9               |

| #   | Article                                                                                                                                                                                           | IF       | CITATIONS                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| 145 | Recent Advances in Li Anode for Aprotic Li-O <sub>2</sub> Batteries. Wuli Huaxue Xuebao/<br>Acta Physico - Chimica Sinica, 2017, 33, 486-499.                                                     | 4.9      | 8                          |
| 146 | â€~Casting' nanoporous nanowires: revitalizing the ancient process for designing advanced catalysts.<br>Journal of Materials Chemistry A, 2018, 6, 10525-10534.                                   | 10.3     | 8                          |
| 147 | Loosely Packed Self-Assembled Monolayer ofN-Hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole<br>on Gold and Its Application in Biomimetic Membrane Research. Langmuir, 2004, 20, 10992-10997. | 3.5      | 7                          |
| 148 | Atomic Force Microscopic and Electrochemical Investigations of an Electrostatically Fabricated Single-Wall Carbon Nanotubes Modified Electrode. Electroanalysis, 2005, 17, 59-64.                 | 2.9      | 7                          |
| 149 | Understanding Lithium-Mediated Oxygen Reactions at the Au DMSO interface: Are We There?. Journal of Physical Chemistry C, 2021, 125, 20762-20771.                                                 | 3.1      | 7                          |
| 150 | Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte. Journal of Materials Science and Technology, 2022, 113, 199-206.                                       | 10.7     | 6                          |
| 151 | Selective Penetration of Liquid-Phase Organic Probe Molecules into SAM of<br>2-Mercapto-3-n-octylthiophene. Journal of the Electrochemical Society, 2003, 150, E197.                              | 2.9      | 5                          |
| 152 | Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution.<br>Chemical Research in Chinese Universities, 2016, 32, 106-111.                              | 2.6      | 5                          |
| 153 | Structure and Performance of<br>Na <sub><i>x</i></sub> Mn <sub>0.85</sub> Al <sub>0.1</sub> Fe <sub>0.05</sub> O <sub>2</sub> (0.7 â‰ <b>p</b> Tj<br>2022. 14. 25348-25356.                       | ETQ.81 1 | 0.784314 rg <mark>8</mark> |
| 154 | Defective 1T′-ReSe2 nanosheets vertically grown on elastic MXene for fast and stable potassium ion storage. Science China Materials, 2022, 65, 3418-3427.                                         | 6.3      | 5                          |
| 155 | Size-dependent aggregates of gold nanoparticles induced by a "molecular fork― New Journal of<br>Chemistry, 2005, 29, 1004.                                                                        | 2.8      | 4                          |
| 156 | A Non-Flammable Zwitterionic Ionic Liquid/Ethylene Carbonate Mixed Electrolyte for Lithium-Ion<br>Battery with Enhanced Safety. Materials, 2021, 14, 4225.                                        | 2.9      | 4                          |
| 157 | Al <sub>2</sub> S <sub>3</sub> Cathode for Rechargeable Aluminum‣ulfur Batteries with Improved<br>Cycling Reversibility. Batteries and Supercaps, 2022, 5, .                                      | 4.7      | 4                          |
| 158 | Making Li2O2 Different in Solution. CheM, 2018, 4, 2730-2731.                                                                                                                                     | 11.7     | 3                          |
| 159 | Polysulfide-driven low charge overpotential for aprotic lithium–oxygen batteries. Journal of<br>Materials Chemistry A, 2019, 7, 8777-8784.                                                        | 10.3     | 3                          |
| 160 | A CO <sub>2</sub> -Assisted Sodium–Phenanthrenequinone Battery. Journal of Physical Chemistry<br>Letters, 2020, 11, 5350-5353.                                                                    | 4.6      | 3                          |
| 161 | Dealloying-constructed hierarchical nanoporous bismuth-antimony anode for potassium ion batteries. Fundamental Research, 2021, 1, 408-417.                                                        | 3.3      | 3                          |
| 162 | Formation, lithium storage properties and mechanism of nanoporous germanium fabricated by dealloying. Journal of Chemical Physics, 2021, 155, 184702.                                             | 3.0      | 2                          |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Lithium–Sulfur Batteries: Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum<br>Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance<br>Lithium–Sulfur Chemistry (Small 40/2019). Small, 2019, 15, 1970216. | 10.0 | 1         |
| 164 | Electrochemical Lithium Intercalation into Graphite in a Mixed Glyme–Propylene Carbonate<br>Electrolyte. Journal of Physical Chemistry C, 2022, 126, 10977-10985.                                                                                           | 3.1  | 1         |
| 165 | A primitive model for intercalationâ $\in$ "conversion bifunctional battery materials. , 2022, 1, .                                                                                                                                                         |      | 0         |