Yitai Qian

List of Publications by Citations

Source: https://exaly.com/author-pdf/4472784/yitai-qian-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 118 20,101 413 h-index g-index citations papers 24,084 426 9.9 7.35 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
413	MoSe2-Covered N,P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1700522	15.6	353
412	Double-Walled Sb@TiO2-x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 4126-33	24	340
411	Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material. <i>Advanced Functional Materials</i> , 2014 , 24, 3012-3020	15.6	330
410	Embedding MnO@Mn O Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage. <i>Advanced Materials</i> , 2018 , 30, 1704244	24	280
409	One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. <i>Scientific Reports</i> , 2016 , 6, 26146	4.9	257
408	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. <i>Joule</i> , 2018 , 2, 2681-2693	27.8	241
407	One-Dimensional Arrays of Co3O4Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16401-16404	3.4	227
406	One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. <i>Nano Research</i> , 2012 , 5, 477-485	10	224
405	Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 20682-90	9.5	223
404	Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. <i>Nature Communications</i> , 2019 , 10, 1217	17.4	218
403	Flexible and Free-Standing TiCT MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. <i>ACS Nano</i> , 2019 , 13, 11676-11685	16.7	213
402	Synthesis of closed PbS nanowires with regular geometric morphologies. <i>Journal of Materials Chemistry</i> , 2002 , 12, 403-405		198
401	Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 4993-5002	16.7	193
400	Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO Nanoparticles for Ultrafast Sodium Storage. <i>Advanced Materials</i> , 2018 , 30, 1705788	24	191
399	General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17421-17426	13	189
398	Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 730-738	13	187
397	Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. <i>Journal of Materials Chemistry</i> , 2002 , 12, 748-753		181

(2001-2017)

396	Wet-Chemical Synthesis of Hollow Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700214	24	175	
395	Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1704865	15.6	173	
394	Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1037-1041	13	172	
393	Controlled Growth of Porous #e2O3 Branches on #MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2013 , 23, 4049-4056	15.6	168	
392	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 12932-12940	16.7	167	
391	Vacuum distillation derived 3D porous current collector for stable lithium the tal batteries. <i>Nano Energy</i> , 2018 , 47, 503-511	17.1	165	
390	Synthesis of MoS2 @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. <i>Small</i> , 2016 , 12, 2484-91	11	164	
389	Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 1571-1579	15.6	162	
388	Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1604265	15.6	157	
387	Few layer nitrogen-doped graphene with highly reversible potassium storage. <i>Energy Storage Materials</i> , 2018 , 11, 38-46	19.4	155	
386	A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 3187-3191	35.4	152	
385	Study of the Raman spectrum of nanometer SnO2. <i>Journal of Applied Physics</i> , 1994 , 75, 1835-1836	2.5	151	
384	An aqueous rechargeable sodium ion battery based on a NaMnO2NaTi2(PO4)3 hybrid system for stationary energy storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1400-1404	13	150	
383	Solution-Phase Synthesis of Single-Crystal CuO Nanoribbons and Nanorings. <i>Crystal Growth and Design</i> , 2007 , 7, 930-934	3.5	140	
382	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15292	13	138	
381	Preparation of nanocrystalline silicon from SiCl4 at 200 LC in molten salt for high-performance anodes for lithium ion batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3822-5	16.4	138	
380	Amorphous S-rich S1\(\text{Sex/C}\) (x \(\text{ID}\).1) composites promise better lithium\(\text{Bulfur batteries in a carbonate-based electrolyte.}\) Energy and Environmental Science, 2015, 8, 3181-3186	35.4	133	
379	Metastable MnS Crystallites through Solvothermal Synthesis. <i>Chemistry of Materials</i> , 2001 , 13, 2169-21	73 .6	132	

378	In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 23, 35-4	5 ^{19.4}	129
377	Spinel Mn1.5Co1.5O4 coreBhell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23254		129
376	Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes. <i>Crystal Growth and Design</i> , 2005 , 5, 325-328	3.5	126
375	Mesoporous NiO ultrathin nanowire networks topotactically transformed from ENi(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14276		124
374	High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance. <i>Crystal Growth and Design</i> , 2006 , 6, 2163-2165	3.5	124
373	Lithium-Assisted Synthesis and Characterization of Crystalline 3CBiC Nanobelts. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 20102-20104	3.4	124
372	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. <i>Energy Storage Materials</i> , 2018 , 15, 234-241	19.4	122
371	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. <i>Science Advances</i> , 2020 , 6, eaaw8113	14.3	116
370	Nanoporous germanium as high-capacity lithium-ion battery anode. <i>Nano Energy</i> , 2015 , 13, 651-657	17.1	114
369	In Situ Revealing the Electroactivity of P?O and P?C Bonds in Hard Carbon for High-Capacity and Long-Life Li/K-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901676	21.8	114
368	Boosting Water Dissociation Kinetics on Pt-Ni Nanowires by N-Induced Orbital Tuning. <i>Advanced Materials</i> , 2019 , 31, e1807780	24	113
367	Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors. <i>CrystEngComm</i> , 2011 , 13, 626-632	3.3	113
366	A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9716-9725	13	110
365	CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14029-14035	3.8	109
364	Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10985	13	108
363	A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 2454-2459	2.3	108
362	Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. <i>Electrochimica Acta</i> , 2016 , 218, 243-251	6.7	106
361	A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. <i>ACS Nano</i> , 2016 , 10, 2295-304	16.7	104

(2011-2015)

360	Hydrothermal Synthesis of Unique Hollow Hexagonal Prismatic Pencils of Co3 V2 O8 ?n H2 O: A New Anode Material for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 107	87- 9 1	104
359	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. <i>CheM</i> , 2018 , 4, 372-385	16.2	103
358	Synthesis of MnO@C coreBhell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17864		102
357	In Situ Li PS Solid-State Electrolyte Protection Layers for Superior Long-Life and High-Rate Lithium-Metal Anodes. <i>Advanced Materials</i> , 2018 , 30, e1804684	24	102
356	A reduction-pyrolysis-catalysis synthesis of diamond. <i>Science</i> , 1998 , 281, 246-7	33.3	99
355	NiS Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 8277-8287	16.7	98
354	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. <i>Nano Letters</i> , 2020 , 20, 2899-2906	11.5	97
353	Manipulating the Redox Kinetics of LiB Chemistry by Tellurium Doping for Improved LiB Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 420-427	20.1	94
352	Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17258-17262	13	94
351	A New Salt-Baked Approach for Confining Selenium in Metal Complex-Derived Porous Carbon with Superior Lithium Storage Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 5229-5238	15.6	94
350	Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. <i>Nanoscale</i> , 2018 , 10, 13236-13241	7.7	94
349	Hydrothermal Growth and Morphology Modification of 卧iS Three-Dimensional Flowerlike Architectures. <i>Crystal Growth and Design</i> , 2007 , 7, 1918-1922	3.5	91
348	l-Cysteine-Assisted Tunable Synthesis of PbS of Various Morphologies. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16761-16767	3.8	90
347	Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries. <i>ACS Nano</i> , 2019 , 13, 13690-13701	16.7	88
346	Graphene-Supported NaTi2(PO4)3as a High Rate Anode Material for Aqueous Sodium Ion Batteries. Journal of the Electrochemical Society, 2014 , 161, A1181-A1187	3.9	88
345	Formation and morphology control of nanoparticlesvia solution routes in an autoclave. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11457		88
344	Double-Shelled Nife®/N-Doped Carbon Nanobox Derived from a Prussian Blue Analogue as an Electrode Material for K-Ion Batteries and Liß Batteries. <i>ACS Energy Letters</i> , 2019 , 4, 1496-1504	20.1	87
343	Fabrication of EMnO2/EMnO2 hollow core/shell structures and their application to water treatment. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16210		87

342	Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16142-16149	13	85
341	Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 1908721	15.6	85
340	A simple melting-diffusing-reacting strategy to fabricate S/NiS-C for lithium-sulfur batteries. <i>Nanoscale</i> , 2016 , 8, 17616-17622	7.7	83
339	Surfactant-assisted growth of uniform nanorods of crystalline tellurium. <i>Journal of Materials Chemistry</i> , 2003 , 13, 159-162		83
338	A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. <i>Inorganic Chemistry</i> , 1998 , 37, 28	34 4. 284	1583
337	The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Liß Full Cell. <i>Advanced Energy Materials</i> , 2018 , 8, 1802561	21.8	83
336	Electrochemical performance of rod-like Sblt composite as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2015 , 3, 3276-3280	13	82
335	A Rational Self-Sacrificing Template Route to	2.3	82
334	Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. <i>Materials Today Energy</i> , 2018 , 10, 241-248	7	82
333	Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. <i>Energy and Environmental Science</i> , 2021 , 14, 3120-3129	35.4	80
332	A graphene oxide-wrapped bipyramidal sulfur@polyaniline coreBhell structure as a cathode for LiB batteries with enhanced electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6404-6410	13	79
331	Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 10348-55	9.5	77
330	3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11597	13	76
329	Conductive and Polar Titanium Boride as a Sulfur Host for Advanced LithiumBulfur Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 6969-6977	9.6	75
328	Self-templating growth of Sb2Se3@C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12283-12291	13	73
327	A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. <i>Energy Storage Materials</i> , 2019 , 17, 93-100	19.4	73
326	One-Pot Hydrothermal Synthesis of FeMoO[Nanocubes as an Anode Material for Lithium-Ion Batteries with Excellent Electrochemical Performance. <i>Small</i> , 2015 , 11, 4753-61	11	73
325	Layered (NH4)2V6O16[i].5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19130-19139	13	72

324	Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 409-14	9.5	72	
323	Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10336-10344	13	70	
322	Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12144-12148	13	68	
321	One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 447-454	9.5	68	
320	Rechargeable aqueous hybrid ion batteries: developments and prospects. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18708-18734	13	68	
319	Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16847-16850	13	68	
318	MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. <i>RSC Advances</i> , 2013 , 3, 10001	3.7	66	
317	Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. <i>Energy Storage Materials</i> , 2020 , 25, 679-686	19.4	66	
316	Low-Temperature Synthesis of Nanocrystalline Titanium Nitride via a BenzeneThermal Route. Journal of the American Ceramic Society, 2004 , 83, 430-432	3.8	65	
315	Single-step synthesis of copper sulfide hollow spheres by a template interface reaction route. Journal of Materials Chemistry, 2004 , 14, 2489		65	
314	Triple-walled SnO2@N-doped carbon@SnO2 nanotubes as an advanced anode material for lithium and sodium storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23194-23200	13	64	
313	Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeSSe. <i>ACS Applied Materials & Description Among Applied </i>	54 ^{.5}	63	
312	Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11297		63	
311	Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Lithetal anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18861-18870	13	62	
310	Hydrothermal Synthesis and Electrochemical Properties of Urchin-Like CoreBhell Copper Oxide Nanostructures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9645-9650	3.8	62	
309	Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 4054-4064	9.6	62	
308	Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance. <i>Chemistry of Materials</i> , 2015 , 27, 4156-4164	9.6	61	
307	Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2728	13	61	

306	NaTi2(PO4)3 Solid-State Electrolyte Protection Layer on Zn Metal Anode for Superior Long-Life Aqueous Zinc-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2004885	15.6	61
305	Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. Journal of Materials Chemistry A, 2019 , 7, 10924-10929	13	60
304	A Facile Method for Synthesis of Porous NiCo2O4 Nanorods as a High-Performance Anode Material for Li-Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 1012-1019	3.1	60
303	Layered-Structure SbPO/Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 12869-12878	16.7	60
302	One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries. <i>Nanoscale</i> , 2016 , 8, 4733-41	7.7	59
301	Water-Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassium-Ion Adsorption/Intercalation Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18108-18115	16.4	59
300	Acetylacetone-Directed Controllable Synthesis of Bi2S3 Nanostructures with Tunable Morphology. Crystal Growth and Design, 2009 , 9, 3862-3867	3.5	59
299	Double-Source Approach to In2S3 Single Crystallites and Their Electrochemical Properties. <i>Crystal Growth and Design</i> , 2006 , 6, 1304-1307	3.5	59
298	Hierarchical Graphene-Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, e1802457	11	59
297	A potential pyrrhotite (Fe7S8) anode material for lithium storage. <i>RSC Advances</i> , 2015 , 5, 14828-14831	3.7	58
296	A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods. Journal of Power Sources, 2014 , 245, 429-435	8.9	58
295	Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 284-291	3.7	58
294	Recent Advances of Emerging 2D MXene for Stable and Dendrite-Free Metal Anodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2004613	15.6	58
293	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. <i>Energy Storage Materials</i> , 2020 , 26, 223-233	19.4	57
292	Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. <i>Energy Storage Materials</i> , 2019 , 20, 46-54	19.4	57
291	Ultrathin mesoporous F-doped ENi(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9656-9664	13	56
290	Synchronous synthesis of Kirkendall effect induced hollow FeSe/C nanospheres as anodes for high performance sodium ion batteries. <i>Chemical Communications</i> , 2018 , 54, 5704-5707	5.8	55
289	Hierarchical coreShell Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3439-3444	13	55

(2011-2014)

	288	Layer structured #FeSe: A potential anode material for lithium storage. <i>Electrochemistry Communications</i> , 2014 , 38, 124-127	5.1	54	
:	287	Large-Scale Synthesis of High Quality Trigonal Selenium Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3250-3255	2.3	54	
	286	Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. <i>Nano Research</i> , 2017 , 10, 1794-1803	10	53	
:	285	Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO/C as an Advanced Anode Material for Na-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 43648-43656	9.5	53	
	284	B,N-Co-doped Graphene Supported Sulfur for Superior Stable Li-S Half Cell and Ge-S Full Battery. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2016 , 8, 27679-27687	9.5	53	
:	283	Recent Advances and Perspectives of Zn-Metal Free R ocking-Chair E Type Zn-Ion Batteries. Advanced Energy Materials, 2021 , 11, 2002529	21.8	52	
;	282	Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte. <i>Small</i> , 2017 , 13, 1603533	11	51	
:	281	Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte. <i>ACS Applied Materials & Description of the Carbonate Section 19</i> , 13813-13818	9.5	51	
	280	Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. <i>Nano Research</i> , 2015 , 8, 1497-1504	10	51	
:	279	Selected-Control Solvothermal Synthesis of Nanoscale Hollow Spheres and Single-Crystal Tubes of PbTe. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 4521-4524	2.3	51	
į	278	A Co-pyrolysis Method to Boron Nitride Nanotubes at Relative Low Temperature. <i>Chemistry of Materials</i> , 2003 , 15, 2675-2680	9.6	51	
:	277	Coral-like NixCo1\(\mathbb{B}\)Se2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. Journal of Materials Chemistry A, 2019 , 7, 3933-3940	13	50	
	276	Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. <i>Chemical Engineering Journal</i> , 2020 , 400, 125843	14.7	50	
:	275	Selective synthesis and characterization of famatinite nanofibers and tetrahedrite nanoflakes. Journal of Materials Chemistry, 2003 , 13, 301-303		50	
:	274	Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 856-860	13	49	
	273	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15859-15867	13	49	
	272	One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6379	13	49	
	271	Convenient synthesis and applications of gram scale boron nitride nanosheets. <i>Catalysis Science and Technology</i> , 2011 , 1, 1119	5.5	49	

270	Large-Scale Synthesis and Growth Mechanism of Single-Crystal Se Nanobelts. <i>Crystal Growth and Design</i> , 2006 , 6, 1514-1517	3.5	48
269	Regulating the Interfacial Electronic Coupling of Fe N via Orbital Steering for Hydrogen Evolution Catalysis. <i>Advanced Materials</i> , 2020 , 32, e1904346	24	48
268	Ultrafine CoS nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 2804-2811	7.7	47
267	Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39318-39	325	46
266	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO for Lithium Storage and Flexible TiCT MXene-Based Lithium-Metal Batteries. <i>ACS Nano</i> , 2020 ,	16.7	46
265	Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering. <i>Advanced Functional Materials</i> , 2021 , 31, 2101886	15.6	46
264	Fully integrated hierarchical double-shelled CoS@CNT nanostructures with unprecedented performance for Li-S batteries. <i>Nanoscale Horizons</i> , 2019 , 4, 182-189	10.8	46
263	High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. <i>Nanoscale</i> , 2015 , 7, 3440-4	7.7	44
262	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. <i>Energy Storage Materials</i> , 2020 , 30, 206-227	19.4	44
261	The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode. Journal of Power Sources, 2015 , 293, 868-875	8.9	43
2 60	Silicon nanoparticles obtained via a low temperature chemical "metathesis" synthesis route and their lithium-ion battery properties. <i>Chemical Communications</i> , 2015 , 51, 2345-8	5.8	43
259	Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next-Generation Lithium-Ion Batteries. <i>Small</i> , 2019 , 15, e1903214	11	43
258	Porous MnFe2O4 microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry A, 2015 , 3, 9550-9555	13	43
257	Hydrothermal synthesis of layered Li1.81H0.19Ti2O5IxH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries. <i>CrystEngComm</i> , 2012 , 14, 6435	3.3	43
256	Origin of additional capacities in selenium-based ZnSe@C nanocomposite Li-ion battery electrodes. <i>Electrochemistry Communications</i> , 2016 , 65, 44-47	5.1	42
255	A general route for the convenient synthesis of crystalline hexagonal boron nitride micromesh at mild temperature. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1989		42
254	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. <i>Energy Storage Materials</i> , 2021 , 34, 12-21	19.4	42
253	A versatile route for the convenient synthesis of rare-earth and alkaline-earth hexaborides at mild temperatures. <i>CrystEngComm</i> , 2010 , 12, 3923	3.3	41

(2013-2010)

252	Double-Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1172-1176	2.3	41
251	A Room-Temperature Route to Bismuth Nanotube Arrays. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3699-3702	2.3	41
250	A Solution Low-Temperature Route to MoS2Fiber. <i>Chemistry of Materials</i> , 2001 , 13, 6-8	9.6	41
249	Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 17435-17455	7.7	41
248	Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. <i>Carbon</i> , 2019 , 149, 664-671	10.4	40
247	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. <i>Energy Storage Materials</i> , 2019 , 23, 587-593	19.4	40
246	Mn-Doped FeOOH Nanorods and Fe2O3 Mesoporous Nanorods: Facile Synthesis and Applications as High Performance Anodes for LIBs. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400057	6.4	40
245	Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. <i>Energy Storage Materials</i> , 2020 , 30, 337-345	19.4	40
244	Quantum-Matter Bi/TiO2 Heterostructure Embedded in N-Doped Porous Carbon Nanosheets for Enhanced Sodium Storage. <i>Small Structures</i> , 2021 , 2, 2000085	8.7	40
243	Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16465-16474	13	39
242	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. <i>ACS Nano</i> , 2021 ,	16.7	39
241	A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn Coinsertion. <i>Small</i> , 2020 , 16, e2001228	11	38
240	Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6276-6282	13	38
239	A synchronous approach for facile production of Ge-carbon hybrid nanoparticles for high-performance lithium batteries. <i>Chemical Communications</i> , 2015 , 51, 3882-5	5.8	38
238	A facile room-temperature route to flower-like CuO microspheres with greatly enhanced lithium storage capability. <i>RSC Advances</i> , 2012 , 2, 8602	3.7	38
237	Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature. <i>New Journal of Chemistry</i> , 2002 , 26, 1440-1442	3.6	38
236	Embedding silicon nanoparticles in graphene based 3D framework by cross-linking reaction for high performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19604-19608	13	37
235	Formation of Graphene-Wrapped Nanocrystals at Room Temperature through the Colloidal Coagulation Effect. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 143-147	3.1	37

234	Synchronously synthesized core\(\text{lhell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites} \) as cathode materials for high performance lithium ion batteries. \(RSC \text{ Advances}, \text{ 2012}, 2, 12886 \)	3.7	37
233	Reduction-Nitridation Synthesis of Titanium Nitride Nanocrystals. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 206-208	3.8	37
232	Rational Design of Sulfur-Doped Three-Dimensional TiCT MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 15259-15273	16.7	37
231	Fabrication of BiTeI submicrometer hollow spheres. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2426-2429)	36
230	A Novel Low-Temperature Synthetic Route to Crystalline Si3N4. <i>Advanced Materials</i> , 1999 , 11, 653-655	24	36
229	Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. <i>Energy Storage Materials</i> , 2021 , 41, 343-353	19.4	36
228	Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2937-2941	16.4	35
227	Fabrication of one-dimensional SnO2/MoO3/C nanostructure assembled of stacking SnO2 nanosheets from its heterostructure precursor and its application in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9784	13	35
226	Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction. <i>Journal of Materials Research</i> , 2001 , 16, 2805-2809	2.5	35
225	Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21966-21975	13	34
224	Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4© nanocomposites. <i>RSC Advances</i> , 2013 , 3, 6847	3.7	34
223	Shape-Controlled Synthesis of Tellurium 1D Nanostructures via a Novel Circular Transformation Mechanism. <i>Crystal Growth and Design</i> , 2007 , 7, 1185-1191	3.5	34
222	Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Applied & Applied & Applied & App</i>	9.5	33
221	The Fabrication and Characterization of Single-Crystalline Selenium Nanoneedles. <i>Crystal Growth and Design</i> , 2006 , 6, 1711-1716	3.5	33
220	InP nanocrystals via surfactant-aided hydrothermal synthesis. <i>Journal of Applied Physics</i> , 2004 , 95, 3683	-36588	33
219	Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. <i>Nano Research</i> , 2020 , 13, 802-809	10	32
218	Recently advances and perspectives of anode-free rechargeable batteries. <i>Nano Energy</i> , 2020 , 78, 1053	4 4 7.1	32
217	Mechanical Pressing Route for Scalable Preparation of Microstructured/Nanostrutured Si/Graphite Composite for Lithium Ion Battery Anodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14230-1	8 423 8	32

216	A new carbon intercalated compound of Dion Dacobson phase HLaNb2O7. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11086		31	
215	Syntheses, structures and magnetic behaviors of di- and trinuclear pivalate complexes containing both cobalt(II) and lanthanide(III) ions. <i>Inorganic Chemistry</i> , 2000 , 39, 4165-8	5.1	31	
214	Mesoporous Hollow Ge Microspheres Prepared via Molten-Salt Metallothermic Reaction for High-Performance Li-Storage Anode. <i>ACS Applied Materials & Distributed & Distributed Materials & Distributed & Distributed & Distribut</i>	9.5	29	
213	Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1463-1469	6.8	29	
212	Low-temperature route to nanoscale P3N5 hollow spheres. <i>Journal of Materials Research</i> , 2003 , 18, 23.	59 <u>2</u> 36	3 29	
211	Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles. <i>Chemical Engineering Journal</i> , 2020 , 379, 122352	14.7	29	
210	Sulfur-Deficient TiS2-x for Promoted Polysulfide Redox Conversion in Lithium-Sulfur Batteries. <i>ChemElectroChem</i> , 2019 , 6, 2231-2237	4.3	28	
209	Thermal-induced shape evolution from uniform triangular to hexagonal r-BN nanoplates. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8086		28	
208	A Facile Approach for the Synthesis of Uniform Hollow Carbon Nanospheres. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1896-1900	3.8	28	
207	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. <i>Energy Storage Materials</i> , 2020 , 32, 115-150	19.4	28	
206	Preparation of Nanocrystalline Silicon from SiCl4 at 200 LC in Molten Salt for High-Performance Anodes for Lithium Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 3893-3896	3.6	27	
205	Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery. <i>CrystEngComm</i> , 2012 , 14, 1485-1489	3.3	27	
204	Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. <i>Dalton Transactions</i> , 2011 , 40, 7645-50	4.3	27	
203	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. <i>Nano Today</i> , 2021 , 37, 101094	17.9	27	
202	Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide. <i>Chemical Engineering Journal</i> , 2021 , 406, 126	8 36 .7	27	
201	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. <i>ACS Nano</i> , 2021 ,	16.7	27	
200	Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. <i>Materials Today Energy</i> , 2019 , 14, 100337	7	26	
199	Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithiumBulfur battery. <i>Electrochimica Acta</i> , 2020 , 354, 136648	6.7	26	

198	Formation of Solid E lectrolyte Interfaces in Aqueous Electrolytes by Altering Cation-Solvation Shell Structure. <i>Advanced Energy Materials</i> , 2020 , 10, 1903665	21.8	26
197	In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. <i>Nanoscale</i> , 2016 , 8, 4903-7	7.7	26
196	Enhanced energy storage and rate performance induced by dense nanocavities inside MnWO4 nanobars. <i>RSC Advances</i> , 2012 , 2, 6748	3.7	26
195	Sulfur-Assisted Approach for the Low-Temperature Synthesis of 邸iC Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 3883-3888	2.3	26
194	Synthesis of Nanocrystalline Boron Carbide via a Solvothermal Reduction of CCl4 in the Presence of Amorphous Boron Powder. <i>Journal of the American Ceramic Society</i> , 2004 , 88, 225-227	3.8	26
193	A Complex-Based Soft Template Route to PbSe Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 644-647	2.3	26
192	Study on the effect of transition metal sulfide in lithiumBulfur battery. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 477-481	6.8	25
191	Chemical synthesis of porous hierarchical Ge-Sn binary composites using metathesis reaction for rechargeable Li-ion batteries. <i>Chemical Communications</i> , 2015 , 51, 17156-9	5.8	25
190	Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. <i>Journal of Colloid and Interface Science</i> , 2019 , 554, 674-681	9.3	25
189	The synthesis of nanostructured SiC from waste plastics and silicon powder. <i>Nanotechnology</i> , 2009 , 20, 355604	3.4	25
188	Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-5	3.2	25
187	Mg-Assisted Autoclave Synthesis of RB6 (R = Sm, Eu, Gd, and Tb) Submicron Cubes and SmB6 Submicron Rods. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1289-1294	2.3	25
186	Defect engineering on carbon black for accelerated Li-S chemistry. <i>Nano Research</i> , 2020 , 13, 3315-3320	10	25
185	A Composite Structure of Cu Ge/Ge/C Anode Promise Better Rate Property for Lithium Battery. Small, 2016 , 12, 6024-6032	11	25
184	Carbon nanotube-stabilized CoS dual-shell hollow spheres for high-performance K-ion storage. <i>Chemical Communications</i> , 2019 , 55, 1406-1409	5.8	24
183	A Si/Ge nanocomposite prepared by a one-step solid-state metathesis reaction and its enhanced electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11199-11202	13	24
182	Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. <i>Nano Research</i> , 2018 , 11, 6294-6303	10	24
181	Recycling chicken eggshell membranes for high-capacity sodium battery anodes. <i>RSC Advances</i> , 2014 , 4, 50950-50954	3.7	24

180	From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials. <i>RSC Advances</i> , 2014 , 4, 14233	3.7	24	
179	Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. <i>CrystEngComm</i> , 2009 , 11, 2009	3.3	24	
178	Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route. <i>Applied Physics Letters</i> , 2008 , 93, 152511	3.4	24	
177	Ethanolthermal synthesis to ECuI nanocrystals at low temperature. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1865-1867		24	
176	A novel two-step radiation route to PbSe crystalline nanorods. <i>Journal of Materials Chemistry</i> , 2001 , 11, 518-520		24	
175	Antimony sulfide tetragonal prismatic tubular crystals. <i>Journal of Materials Chemistry</i> , 2001 , 11, 257-25	9	24	
174	Designed Formation of MnO2@NiO/NiMoO4 Nanowires@Nanosheets Hierarchical Structures with Enhanced Pseudocapacitive Properties. <i>ChemElectroChem</i> , 2016 , 3, 1347-1353	4.3	24	•
173	Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1010-1051	13	23	
172	High-Spin Sulfur-Mediated Phosphorous Activation Enables Safe and Fast Phosphorus Anodes for Sodium-Ion Batteries. <i>CheM</i> , 2020 , 6, 221-233	16.2	23	
171	Comparison between SnSbII and SnII composites as anode materials for lithium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 62301-62307	3.7	22	
170	A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides. <i>Materials Chemistry and Physics</i> , 2012 , 137, 1-4	4.4	22	
169	A scalable synthesis of N-doped Si nanoparticles for high-performance Li-ion batteries. <i>Chemical Communications</i> , 2016 , 52, 3813-6	5.8	21	
168	Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route. <i>CrystEngComm</i> , 2012 , 14, 7217	3.3	21	
167	Solvothermal Synthesis of Si3N4 Nanomaterials at a Low Temperature. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 1725-1728	3.8	21	
166	Hydrothermal evolution of the thiourea-cerium(III) nitrate system: formation of cerium hydroxycarbonate and hydroxysulfate. <i>Inorganic Chemistry</i> , 2000 , 39, 4380-2	5.1	21	
165	MoO 2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. <i>Electrochimica Acta</i> , 2016 , 213, 416-422	6.7	21	
164	Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. <i>Science China Materials</i> , 2019 , 62, 455-464	7.1	21	
163	Polyanions Enhance Conversion Reactions for Lithium/Sodium-Ion Batteries: The Case of SbVO4 Nanoparticles on Reduced Graphene Oxide. <i>Small Methods</i> , 2019 , 3, 1900231	12.8	20	

162	New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries. <i>Small</i> , 2019 , 15, e1804916	11	20
161	Solid state synthesis of a new ternary nitride MgMoN2 nanosheets and micromeshes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14559		20
160	A simple pyrolysis route to synthesize leaf-like carbon sheets. <i>Carbon</i> , 2010 , 48, 3420-3426	10.4	20
159	Formation of Carbon Nanotubes and Cubic and Spherical Nanocages. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 20090-20094	3.4	20
158	Synthesis of short CdS nanofiber/poly(styrene-alt-maleic anhydride) composites using Erradiation. Journal of Materials Chemistry, 2000 , 10, 329-332		20
157	Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: the case of acetylene black and N-doped carbon spheres. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8765-87	7b³	19
156	ZIF-Derived Cobalt-Containing N-Doped Carbon-Coated SiO Nanoparticles for Superior Lithium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 7206-7211	9.5	19
155	Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. <i>Journal of Power Sources</i> , 2018 , 399, 1-7	8.9	19
154	Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. <i>Nano Research</i> , 2019 , 12, 1115-1120	10	18
153	Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. Journal of Materials Chemistry A, 2020 , 8, 14190-14197	13	18
152	Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol. <i>RSC Advances</i> , 2012 , 2, 10689	3.7	18
151	Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13756		18
150	Soft solution processing of cerium hydroxysulfate powders with different morphologies. <i>Journal of Materials Chemistry</i> , 2003 , 13, 150-153		18
149	Amidation-Dominated Re-Assembly Strategy for Single-Atom Design/Nano-Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable K-Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6459-6465	16.4	17
148	Heteroatom dopings and hierarchical pores of graphene for synergistic improvement of lithium Bulfur battery performance. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1053-1061	6.8	17
147	Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. <i>Nano Research</i> , 2019 , 12, 2941-2946	10	17
146	Magnesium-assisted formation of metal carbides and nitrides from metal oxides. <i>International Journal of Refractory Metals and Hard Materials</i> , 2012 , 31, 288-292	4.1	17
145	Site-Selective Adsorption on ZnF/Ag Coated Zn for Advanced Aqueous Zinc-Metal Batteries at Low Temperature <i>Nano Letters</i> , 2022 ,	11.5	17

144	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. <i>Energy Storage Materials</i> , 2021 , 38, 157-189	19.4	17	
143	General Fabrication of Boride, Carbide, and Nitride Nanocrystals via a Metal-Hydrolysis-Assisted Process. <i>Inorganic Chemistry</i> , 2017 , 56, 2440-2447	5.1	16	
142	Scalable synthesis of carbon stabilized SiO/graphite sheets composite as anode for high-performance Li ion batteries. <i>RSC Advances</i> , 2017 , 7, 39762-39766	3.7	16	
141	CuBr Crystal Growth in Ethylene Glycol Solvent by the Temperature-Difference Method. <i>Crystal Growth and Design</i> , 2004 , 4, 413-414	3.5	16	
140	Wet Synthesis and Characterization of MSe (M = Cd, Hg) Nanocrystallites at Room Temperature. Journal of Materials Research, 2002 , 17, 1147-1152	2.5	16	
139	Single-step synthesis of nanocrystalline CdS/polyacrylamide composites by 🛭 Irradiation. <i>Journal of Materials Science</i> , 2000 , 35, 285-287	4.3	16	
138	Revealing the Double-Edged Behaviors of Heteroatom Sulfur in Carbonaceous Materials for Balancing K-Storage Capacity and Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2006875	15.6	16	
137	Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. <i>Nano Research</i> , 2019 , 12, 1824-1830	10	15	
136	Isostructural Cd3E2 (E = P, As) Microcrystals Prepared via a Hydrothermal Route. <i>Crystal Growth and Design</i> , 2006 , 6, 849-853	3.5	15	
135	Edge-Plane Exposed N-Doped Carbon Nanofibers Toward Fast K-Ion Adsorption/Diffusion Kinetics for K-Ion Capacitors. <i>CCS Chemistry</i> , 2020 , 2, 495-506	7.2	15	
134	Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. <i>Nano Research</i> , 2021 , 14, 4696	10	15	
133	Pyridinic and pyrrolic nitrogen-enriched carbon as a polysulfide blocker for high-performance lithiumBulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 955-960	6.8	15	
132	Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium Bulfur batteries. <i>Nano Today</i> , 2021 , 40, 101246	17.9	15	
131	Construction of hierarchical MoSe2@C hollow nanospheres for efficient lithium/sodium ion storage. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1691-1698	6.8	14	
130	Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries. <i>Dalton Transactions</i> , 2018 , 47, 7402-7406	4.3	14	
129	Porous silicon nano-aggregate from silica fume as an anode for high-energy lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 30577-30581	3.7	14	
128	Tartatric Acid and L-Cysteine Synergistic-Assisted Synthesis of Antimony Trisulfide Hierarchical Structures in Aqueous Solution. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 5302-5306	2.3	14	
127	Low-temperature deposition of ultrafine rutile TiO2 thin films by the hydrothermal method. <i>Physica Status Solidi A</i> , 1996 , 156, 381-385		14	

126	Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. <i>Chemical Communications</i> , 2019 , 55, 6751-6754	5.8	13
125	Mn3O4@C coreBhell composites as an improved anode for advanced lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 46829-46833	3.7	13
124	Stable Lithium Deposition Enabled by an Acid-Treated g-CN Interface Layer for a Lithium Metal Anode. <i>ACS Applied Materials & English States</i> , 2020, 12, 11265-11272	9.5	13
123	Trace Fe3+ mediated synthesis of LiFePO4 micro/nanostructures towards improved electrochemical performance for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 456-463	3.7	13
122	Water-Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassium-Ion Adsorption/Intercalation Storage. <i>Angewandte Chemie</i> , 2019 , 131, 18276-18283	3.6	13
121	One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11974-11979	13	13
120	Growth and characterization of ZnS porous nanoribbon array constructed by connected nanocrystallities. <i>CrystEngComm</i> , 2009 , 11, 2308	3.3	13
119	Synthesis of Kelp-Like Crystalline 野iC Nanobelts and their Apical Growth Mechanism. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 653-656	3.8	13
118	A Template-Interface Co-Reduction Synthesis of Hollow Sphere-like Carbides. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3534-3537	2.3	13
117	One step conversion of waste polyethylene to Cr3C2 nanorods and Cr2AlC particles under mild conditions. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2893-2897	6.8	13
116	Organics Intercalation into Layered Structures Enables Superior Interface Compatibility and Fast Charge Diffusion for Dendrite-Free Zn Anodes. <i>Energy and Environmental Science</i> ,	35.4	13
115	Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17544-17548	13	12
114	Low-Temperature Synthesis of Nanocrystalline &i3N4 Powders by the Reaction of Mg2Si with NH4Cl. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 1810-1813	3.8	12
113	Shape-Induced Enhanced Luminescent Properties of Red Phosphors: Sr2MgSi2O7:Eu3+ Nanotubes. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 4031-4034	2.3	12
112	Cu5.5FeS6.5 nanotubes new kind of ternary sulfide nanotube. <i>New Journal of Chemistry</i> , 2001 , 25, 1359-1361	3.6	12
111	Hydrothermal D isproportionation D f Biomass into Oriented Carbon Microsphere Anode and 3D Porous Carbon Cathode for Potassium Ion Hybrid Capacitor. <i>Advanced Functional Materials</i> , 2021 , 31, 2103115	15.6	12
110	Silicothermic reduction reaction for fabricating interconnected Si G e nanocrystals with fast and stable Li-storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6597-6606	13	11
109	SulfurBydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithiumBulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 785-792	6.8	11

(2014-2016)

108	A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. <i>Dalton Transactions</i> , 2016 , 45, 19221-19225	4.3	11
107	A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2013-2017	6.8	11
106	An AlO coating layer on mesoporous Si nanospheres for stable solid electrolyte interphase and high-rate capacity for lithium ion batteries. <i>Nanoscale</i> , 2019 , 11, 16781-16787	7.7	11
105	Stable Cycling of Fe O Nanorice as an Anode through Electrochemical Porousness and the Solid-Electrolyte Interphase Thermolysis Approach. <i>ChemPlusChem</i> , 2014 , 79, 143-150	2.8	11
104	Solution-phase synthesis of nanomaterials at low temperature 2009 , 52, 13-20		11
103	A Chemical Co-Reduction Route to Synthesize Nanocrystalline Vanadium Carbide. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 320-322	3.8	11
102	Synthesis of nanocrystalline MoN from a new precursor by TPR method. <i>Journal of Materials Science</i> , 2003 , 38, 3473-3478	4.3	11
101	Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture. <i>ACS Applied Materials & Diterfaces</i> , 2020 , 12, 49607-49616	9.5	11
100	Mesh-like LiZnBO3/C composites as a prominent stable anode for lithium ion rechargeable batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5489-5494	13	10
99	Additive-Assisted Nitridation to Synthesize Si3N4 Nanomaterials at a Low Temperature. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 517-519	3.8	10
98	Synthesis and Electrical Capacitance of Carbon Nanoplates. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4314-4320	2.3	10
97	Large-Scale Synthesis of Magnenium Silicon Nitride Powders at Low Temperature. <i>Journal of the American Ceramic Society</i> , 2007 , 91, 333-336	3.8	10
96	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. <i>Science China Chemistry</i> , 2020 , 63, 1563-1569	7.9	10
95	Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20486-20492	13	10
94	2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage. <i>Nano Research</i> , 2021 , 14, 1061-1068	10	10
93	Yolk-shell structured CoSe/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. <i>Nanoscale</i> , 2021 , 13, 10385-10392	7.7	10
92	Manipulating Electrocatalytic Polysulfide Redox Kinetics by 1D CoreBhell Like Composite for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> ,2103915	21.8	10
91	Synthesis of novel morphologies of Li2FeSiO4/C micro/nano composites by a facile hydrothermal method. <i>RSC Advances</i> , 2014 , 4, 39889-39893	3.7	9

90	A facile synthesis of highly porous CdSnO3 nanoparticles and their enhanced performance in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4970	13	9
89	Hydrothermal Synthesis of Unique Hollow Hexagonal Prismatic Pencils of Co3V2O8?n H2O: A New Anode Material for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 10937-10941	3.6	9
88	Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials. <i>Journal of Nanomaterials</i> , 2010 , 2010, 1-16	3.2	9
87	Microtubes and balls of amorphous phosphorus nitride imide (HPN2) prepared by a benzene-thermal method. <i>Chemical Communications</i> , 2001 , 469-470	5.8	9
86	Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution. <i>Nano Letters</i> , 2020 , 20, 7342-7349	11.5	9
85	Sandwich-like NiP nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. <i>Data in Brief</i> , 2018 , 20, 1999-2002	1.2	9
84	One-step solid state reaction for the synthesis of ternary nitrides Co3Mo3N and Fe3Mo3N. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 2055-2058	6.8	8
83	Rationally designed hierarchical MnO2@NiO nanostructures for improved lithium ion storage. <i>RSC Advances</i> , 2015 , 5, 61148-61154	3.7	8
82	Amorphous mesoporous GeO anode for Na-ion batteries with high capacity and long lifespan. <i>Royal Society Open Science</i> , 2018 , 5, 171477	3.3	8
81	Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 6143-6147	2.1	8
80	A novel benzene later azeotrope route to new Na-based metal fluorosulphates NaFeSO4F and NaFeSO4F \(\textit{D} H2O \) in one minute. \(\textit{CrystEngComm}, \textit{2012}, 14, 4251 \)	3.3	8
79	Preparation of Semiconductor/Polymer Coaxial Nanocables by a Facile Solution Process. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 207-212	2.3	8
78	Applications of MoS2 in LiD2 Batteries: Development and Challenges. <i>Energy & Company Fuels</i> , 2021 , 35, 5613-5626	4.1	8
77	Construction and electrochemical mechanism investigation of hierarchical core©hell like composite as high performance anode for potassium ion batteries. <i>Nano Research</i> , 2021 , 14, 3552-3561	10	8
76	Facile synthesis and electrochemistry of a new cubic rocksalt LixVyO2 ($x = 0.78$, $y = 0.75$) electrode material. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5148-5155	13	7
75	Converting Waste Polyethylene into ZnCCo and ZnCNi by a One-Step Thermal Reduction Process. <i>ACS Omega</i> , 2019 , 4, 15729-15733	3.9	7
74	Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 coreBhell microcubes with controllable pore size. <i>RSC Advances</i> , 2015 , 5, 40899-40906	3.7	7
73	A molten salt strategy for deriving a porous Si@C nano-composite from Si-rich biomass for high-performance Li-ion batteries. <i>RSC Advances</i> , 2016 , 6, 79890-79893	3.7	7

(2022-2020)

72	Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. <i>Chemical Communications</i> , 2020 , 56, 11795-11798	5.8	7
71	Revealing Quasi-1D Volume Expansion in Na-/K-Ion Battery Anodes: A Case Study of Sb 2 O 3 Microbelts. <i>CCS Chemistry</i> , 2021 , 3, 1306-1315	7.2	7
70	Synchronously synthesized Si@C composites through solvothermal oxidation of Mg2Si as lithium ion battery anode. <i>RSC Advances</i> , 2015 , 5, 71355-71359	3.7	6
69	Aqueous solution route to nanocrystalline HgE (E=S, Se, Te). <i>Journal of Materials Science Letters</i> , 2002 , 21, 1657-1659		6
68	A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life. <i>Science China Materials</i> , 2021 , 64, 783-788	7.1	6
67	Aqueous Rechargeable Li /Na Hybrid Ion Battery with High Energy Density and Long Cycle Life. <i>Small</i> , 2020 , 16, e2003585	11	6
66	Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. <i>Nano Research</i> ,1	10	6
65	Hierarchical desert-waves-like LiNi0.5Mn1.5O4 as advanced cathodes with superior rate capability and cycling stability. <i>Materials Today Energy</i> , 2019 , 14, 100363	7	6
64	A porous polycrystalline NiCo2Px as a highly efficient host for sulfur cathodes in LiB batteries. <i>Journal of Materials Chemistry A</i> ,	13	6
63	Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 2983-2987	3.6	5
62	Promoting spherical epitaxial deposition of solid sulfides for high-capacity Liß batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7100-7108	13	5
61	Synthesis of TiN hollow sphere by a modified one-step template self-assembly method. <i>CrystEngComm</i> , 2012 , 14, 2186	3.3	5
60	Malic acid assisted precursor route to hierarchical structured nickel oxide. <i>Crystal Research and Technology</i> , 2010 , 45, 545-550	1.3	5
59	Synthesis of MnV2O6 nanoflakes via simple hydrothermal process. <i>Frontiers of Chemistry in China:</i> Selected Publications From Chinese Universities, 2008 , 3, 275-278		5
58	Polyol-mediated preparation of disklike (ZnSe)2ŒN precursor and its conversion to ZnSe crystals with quasi-network structure. <i>Journal of Materials Research</i> , 2004 , 19, 1369-1373	2.5	5
57	A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder. <i>Journal of Materials Research</i> , 1999 , 14, 3870-3872	2.5	5
56	Preparation of Nanocrystalline Cadmium Powder by the γ-Radiation Method. <i>Materials Transactions, JIM</i> , 1995 , 36, 80-81		5
55	One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries <i>ACS Nano</i> , 2022 ,	16.7	5

54	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2021,	21.8	5
53	Rational Design of Tungsten Selenide @ N-Doped Carbon Nanotube for High-Stable Potassium-Ion Batteries. <i>Small</i> , 2021 , e2104363	11	5
52	Zero-Strain Structure for Efficient Potassium Storage Nitrogen-Enriched Carbon Dual-Confinement CoP Composite. <i>Advanced Energy Materials</i> ,2103341	21.8	5
51	Guiding Smooth Li Plating and Stripping by a Spherical Island Model for Lithium Metal Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 38098-38105	9.5	5
50	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. <i>Energy Storage Materials</i> , 2022 , 48, 447-457	19.4	5
49	Chemical fixation of CO2 on activated Si: Producing graphitic carbon-stabilized Si particles for Li-storage. <i>Energy Storage Materials</i> , 2020 , 31, 36-43	19.4	4
48	Design and synthesis of a stable-performance P2-type layered cathode material for sodium ion batteries. <i>RSC Advances</i> , 2016 , 6, 55327-55330	3.7	4
47	Synthesis of superconducting sphere-like Mo2C nanoparticles in an autoclave. <i>Crystal Research and Technology</i> , 2012 , 47, 467-470	1.3	4
46	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. <i>Advanced Functional Materials</i> ,2110444	15.6	4
45	Hierarchical interlayer-expanded MoSe2/Nt nanorods for high-rate and long-life sodium and potassium-ion batteries. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1271-1278	6.8	4
44	Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 4282-4290	6.8	4
43	Metallothermic Reduction of Molten Adduct [PCl][AlCl] at 50 °C to Amorphous Phosphorus or Crystallized Phosphides. <i>ACS Applied Materials & District Research</i> , 10, 42469-42474	9.5	4
42	Hierarchical Fusiform Microrods Constructed by Parallelly Arranged Nanoplatelets of LiCoO Material with Ultrahigh Rate Performance. <i>ACS Applied Materials & Discounty of the Parallely Arranged Nanoplatelets of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of the National States of LiCoO Materials & Discounty of Lic</i>	8 ² 1·5	3
41	Synthesis of urchin-like SnInOII composite and its enhanced electrochemical performance for lithium-ion batteries. <i>Science Bulletin</i> , 2014 , 59, 2006-2011		3
40	Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 3535-3543	2.3	3
39	Synthesis and magnetic properties of Fe3O4/helical carbon nanofiber nanocomposites from the catalytic pyrolysis of ferrocene. <i>Science Bulletin</i> , 2011 , 56, 3199		3
38	Orthogonal Design-Assisted Solvothermal Strategy for Preparing Silicon Nitride Nanodendrites on a Large Scale. <i>International Journal of Applied Ceramic Technology</i> , 2010 , 7, 889-894	2	3
37	Solvothermal synthesis of titanium phosphides via sodium co-reduction of PCl3 and TiCl4. <i>Journal of Materials Science Letters</i> , 2003 , 22, 1463-1464		3

36	Effects of ionic radius on structure and superconductivity for high-Tc oxide superconductors. <i>Physica Status Solidi A</i> , 1992 , 130, 415-420		3	
35	Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. <i>Nano Today</i> , 2022 , 43, 101408	17.9	3	
34	Porous lithium cobalt oxide fabricated from metal-organic frameworks as a high-rate cathode for lithium-ion batteries <i>RSC Advances</i> , 2020 , 10, 31889-31893	3.7	3	
33	High-Voltage and Super-Stable Aqueous Sodium-Zinc Hybrid Ion Batteries Enabled by Double Solvation Structures in Concentrated Electrolyte <i>Small Methods</i> , 2021 , 5, e2100418	12.8	3	
32	One-step chemical synthesis of MgCNi3 nanoparticles embedded in carbon nanosheets utilizing waste polyethylene as carbon source. <i>Materials Research Express</i> , 2019 , 6, 126003	1.7	3	
31	Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. <i>Nano Research</i> , 2021 , 14, 139-147	10	3	
30	Iron Selenide-Based Heterojunction Construction and Defect Engineering for Fast Potassium/Sodium-Ion Storage <i>Small</i> , 2022 , e2107252	11	3	
29	Highly reversible and safe lithium metal batteries enabled by Non-flammable All-fluorinated carbonate electrolyte conjugated with 3D flexible MXene-based lithium anode. <i>Chemical Engineering Journal</i> , 2022 , 440, 135818	14.7	3	
28	N-Doped carbon nanotubes decorated with Fe/Ni sites to stabilize lithium metal anodes. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 2747-2752	6.8	2	
27	Anodes: Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material (Adv. Funct. Mater. 20/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3011-3011	15.6	2	
26	Oxygen Content, Crystal Structure, and Superconductivity in YSr2Cu2.75Mo0.25O7+\(\textit{\textit{Physica}}\) Physica Status Solidi (B): Basic Research, 1995 , 189, 171-175	1.3	2	
25	Structural variation and recovery of superconductivity by Ca substitution in Y0.4Pr0.6Bs2⊠ Ca x Cu3. <i>Journal of Superconductivity and Novel Magnetism</i> , 1996 , 9, 89-91		2	
24	Grinding Induced Crystalline to Amorphous Transformation of Bi8SrCaO14. <i>Physica Status Solidi A</i> , 1991 , 124, K89-K92		2	
23	Cation-Dependent Hydrogel Template-Activation Strategy: Constructing 3D Anode and High Specific Surface Cathode for Dual-Carbon Potassium-Ion Hybrid Capacitor <i>Small</i> , 2022 , e2106712	11	2	
22	A Friendly Soluble Protic Additive Enabling High Discharge Capability and Stabilizing Li Metal Anodes in LiD2 Batteries. <i>Advanced Functional Materials</i> ,2106984	15.6	2	
21	Molten Salt Derived Graphene-Like Carbon Nanosheets Wrapped SiOx/Carbon Submicrospheres with Enhanced Lithium Storage Chinese Journal of Chemistry, 2021 , 39, 1233-1239	4.9	2	
20	An aqueous rechargeable lithium ion battery with long cycle life and overcharge self-protection. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2749-2757	7.8	2	
19	Rocking Chair Batteries: Recent Advances and Perspectives of Zn-Metal Free R ocking-Chair Type Zn-lon Batteries (Adv. Energy Mater. 5/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170023	21.8	2	

18	Towards High-Performance Aqueous Sodium Ion Batteries: Constructing Hollow NaTi 2 (PO 4) 3 @C Nanocube Anode with Zn Metal-Induced Pre-Sodiation and Deep Eutectic Electrolyte. <i>Advanced Energy Materials</i> ,2104053	21.8	2
17	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. <i>Nano Research</i> ,1	10	2
16	Constructing Reactive Micro-Environment in Basal Plane of MoS 2 for pH-Universal Hydrogen Evolution Catalysis. <i>Small</i> ,2107974	11	2
15	Nanoporous Si@Carbon: Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode (Adv. Funct. Mater. 9/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070058	15.6	1
14	Amidation-Dominated Re-Assembly Strategy for Single-Atom Design/Nano-Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable K-Storage. <i>Angewandte Chemie</i> , 2020 , 132, 6521-6	5 2 .6	1
13	Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithiumBulfur batteries. <i>Nano Research</i> ,1	10	1
12	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K+ Diffusion and Storage 2021 , 3, 790-798		1
11	Controlled Tin Oxide Nanoparticles Encapsulated in N-Doped Carbon Nanofibers for Superior Lithium-Ion Storage. <i>ACS Applied Energy Materials</i> , 2022 , 5, 1840-1848	6.1	1
10	Chemical Buffer Layer Enabled Highly Reversible Zn Anode for Deeply Discharging and Long-Life Zn-Air Battery <i>Small</i> , 2021 , e2106604	11	1
9	Single-atom catalysts cathode for lithium-Oxygen batteries:A review. <i>Nano Futures</i> ,	3.6	O
8	Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. <i>Nano Research</i> ,1	10	0
7	Constructing Complementary Catalytic Components on Co 4 N Nanowires to Achieve Efficient Hydrogen Evolution Catalysis. <i>Advanced Energy and Sustainability Research</i> ,2100219	1.6	O
6	Water Splitting: Boosting Water Dissociation Kinetics on PtNi Nanowires by N-Induced Orbital Tuning (Adv. Mater. 16/2019). <i>Advanced Materials</i> , 2019 , 31, 1970116	24	
5	Solid-state room-temperature route to silver composite nanowires. <i>Journal of Materials Science Letters</i> , 2002 , 21, 1737-1738		
4	Superconducting Behavior of Bi1.5Pb0.5Ca2Sr2Cu3Oy at Low Magnetic Field. <i>Physica Status Solidi</i> (B): Basic Research, 1989 , 154, K51-K54	1.3	
3	Structural Characteristics of High Tc Superconducting Oxide in (Bi,Pb)-Sr-Ca-Cu-O System. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 184, 401-408		
2	TRANSPORT PROPERTIES IN SINGLE PHASE SUPERCONDUCTOR Ba2YCu3O9[International Journal of Modern Physics B, 1987 , 01, 485-489	1.1	
1	SUPERCONDUCTIVITY ASSOCIATED WITH THE GRANULAR STRUCTURE IN Ba2YCu3O7[] <i>Modern Physics Letters B</i> , 1988 , 02, 1011-1015	1.6	