
Nicholas C Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4472736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the â€~final au problem'. Monthly Notices of the Royal Astronomical Society, 2017, 464, 946-954.	1.6	335
2	Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Monthly Notices of the Royal Astronomical Society, 2016, 455, 859-883.	1.6	254
3	A bright year for tidal disruptions. Monthly Notices of the Royal Astronomical Society, 2016, 461, 948-966.	1.6	184
4	Consequences of strong compression in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1809-1824.	1.6	169
5	Finite, intense accretion bursts from tidal disruption of stars on bound orbits. Monthly Notices of the Royal Astronomical Society, 2013, 434, 909-924.	1.6	140
6	Circularization of tidally disrupted stars around spinning supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3760-3780.	1.6	138
7	Black hole masses of tidal disruption event host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1694-1708.	1.6	108
8	Late-time UV Observations of Tidal Disruption Flares Reveal Unobscured, Compact Accretion Disks ^{â^—} . Astrophysical Journal, 2019, 878, 82.	1.6	82
9	Observing Lense-Thirring Precession in Tidal Disruption Flares. Physical Review Letters, 2012, 108, 061302.	2.9	77
10	Black hole masses of tidal disruption event host galaxies II. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4136-4152.	1.6	75
11	Formation of Massive Black Holes in Galactic Nuclei: Runaway Tidal Encounters. Monthly Notices of the Royal Astronomical Society, 0, , stx097.	1.6	63
12	Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3410-3433.	1.6	63
13	A statistical solution to the chaotic, non-hierarchical three-body problem. Nature, 2019, 576, 406-410.	13.7	61
14	Prompt tidal disruption of stars as an electromagnetic signature of supermassive black hole coalescence. Monthly Notices of the Royal Astronomical Society, 2011, 412, 75-80.	1.6	60
15	Intermediate mass black hole formation in compact young massive star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5257-5273.	1.6	60
16	Stellar tidal disruption events in general relativity. General Relativity and Gravitation, 2019, 51, 1.	0.7	54
17	Evaporation and accretion of extrasolar comets following white dwarf kicks. Monthly Notices of the Royal Astronomical Society, 2015, 448, 188-206.	1.6	53
18	AN ENHANCED RATE OF TIDAL DISRUPTIONS IN THE CENTRALLY OVERDENSE E+A GALAXY NGC 3156. Astrophysical Journal Letters, 2016, 825, L14,	3.0	53

NICHOLAS C STONE

#	Article	IF	CITATIONS
19	Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems. Monthly Notices of the Royal Astronomical Society, 2018, 474, 947-960.	1.6	51
20	A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. Science, 2019, 363, 531-534.	6.0	51
21	Secular dimming of KIC 8462852 following its consumption of a planet. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4399-4407.	1.6	50
22	Interacting Stellar EMRIs as Sources of Quasi-periodic Eruptions in Galactic Nuclei. Astrophysical Journal, 2022, 926, 101.	1.6	45
23	Thawing the frozen-in approximation: implications for self-gravity in deeply plunging tidal disruption events. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L146-L150.	1.2	42
24	On the origins of enigmatic stellar populations in Local Group galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1605-1623.	1.6	38
25	Continuum-fitting the X-Ray Spectra of Tidal Disruption Events. Astrophysical Journal, 2020, 897, 80.	1.6	38
26	The Delay Time Distribution of Tidal Disruption Flares. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	36
27	Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters. Astrophysical Journal, 2017, 844, 75.	1.6	29
28	Tidal disruption discs formed and fed by stream–stream and stream–disc interactions in global GRHD simulations. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1627-1648.	1.6	28
29	Tidal disruption flares of stars from moderately recoiled black holes. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1933-1947.	1.6	26
30	The chaotic four-body problem in Newtonian gravity– I. Identical point-particles. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3311-3325.	1.6	26
31	The Observed Mass Distribution of Galactic Black Hole LMXBs Is Biased against Massive Black Holes. Astrophysical Journal, 2021, 921, 131.	1.6	26
32	Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li. Astrophysical Journal Letters, 2017, 837, L30.	3.0	25
33	The Structure of Tidal Disruption Event Host Galaxies on Scales of Tens to Thousands of Parsecs. Astrophysical Journal, 2020, 891, 93.	1.6	23
34	Mass, Spin, and Ultralight Boson Constraints from the Intermediate-mass Black Hole in the Tidal Disruption Event 3XMM J215022.4–055108. Astrophysical Journal, 2021, 918, 46.	1.6	22
35	Circumnuclear media of quiescent supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2015, 453, 775-796.	1.6	15
36	A DYNAMICAL POTENTIAL–DENSITY PAIR FOR STAR CLUSTERS WITH NEARLY ISOTHERMAL INTERIORS. Astrophysical Journal Letters, 2015, 806, L28.	3.0	13

NICHOLAS C STONE

#	Article	IF	CITATIONS
37	Feedback-dominated Accretion Flows. Astrophysical Journal, 2022, 928, 191.	1.6	12
38	Orphaned exomoons: Tidal detachment and evaporation following an exoplanet–star collision. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5119-5135.	1.6	8
39	Density wakes driving dynamical friction in cored potentials. Monthly Notices of the Royal Astronomical Society, 2022, 515, 407-436.	1.6	8
40	A Library of Synthetic X-Ray Spectra for Fitting Tidal Disruption Events. Astrophysical Journal, 2022, 933, 31.	1.6	7
41	Massive Black Hole Formation in Dense Stellar Environments: Enhanced X-Ray Detection Rates in High-velocity Dispersion Nuclear Star Clusters. Astrophysical Journal, 2022, 929, 84.	1.6	5
42	Editorial to the Topical Collection: The Tidal Disruption of Stars by Massive Black Holes. Space Science Reviews, 2021, 217, 1.	3.7	0