Torsten Brezesinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4471942/publications.pdf

Version: 2024-02-01

196 papers 18,140 citations

67 h-index 131 g-index

208 all docs 208
docs citations

208 times ranked 17344 citing authors

#	Article	IF	CITATIONS
1	The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. Materials Futures, 2022, 1, 015102.	8.4	40
2	Multiâ€Element Surface Coating of Layered Niâ€Rich Oxide Cathode Materials and Their Longâ€Term Cycling Performance in Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, 2101100.	3.7	10
3	High-Entropy Polyanionic Lithium Superionic Conductors. , 2022, 4, 418-423.		27
4	Design of Ordered Mesoporous CeO ₂ â€"YSZ Nanocomposite Thin Films with Mixed Ionic/Electronic Conductivity via Surface Engineering. ACS Nano, 2022, 16, 3182-3193.	14.6	8
5	Single step synthesis of W-modified LiNiO ₂ using an ammonium tungstate flux. Journal of Materials Chemistry A, 2022, 10, 7841-7855.	10.3	17
6	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solidâ€State Batteries. Advanced Functional Materials, 2022, 32, .	14.9	45
7	A Quasiâ€Multinary Composite Coating on a Nickelâ€Rich NCM Cathode Material for Allâ€Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	4.7	9
8	Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO ₂ . Journal of the Electrochemical Society, 2022, 169, 030540.	2.9	15
9	Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation. Coatings, 2022, 12, 402.	2.6	8
10	On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries. Materials Futures, 2022, 1, 023501.	8.4	17
11	Probing the Lithium Substructure and Ionic Conductivity of the Solid Electrolyte Li ₄ PS ₄ I. Inorganic Chemistry, 2022, 61, 5885-5890.	4.0	2
12	Materials Futuresâ€"an open access journal to serve the materials science community. Materials Futures, 2022, 1, 010201.	8.4	0
13	Oneâ€pot synthesis of highâ€capacity silicon anodes via onâ€copper growth of a semiconducting, porous polymer. Natural Sciences, 2022, 2, .	2.1	O
14	Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	37
15	In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials. Journal of Materials Research, 2022, 37, 3146-3168.	2.6	21
16	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solidâ€State Batteries (Adv. Funct. Mater. 23/2022). Advanced Functional Materials, 2022, 32, .	14.9	2
17	(Digital Presentation) Modifying LiNiO ₂ with W Via a Single Step Synthesis Route. ECS Meeting Abstracts, 2022, MA2022-01, 218-218.	0.0	O
18	High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates. Inorganic Chemistry, 2021, 60, 115-123.	4.0	10

#	Article	IF	CITATIONS
19	Ordered mesoporous metal oxides for electrochemical applications: correlation between structure, electrical properties and device performance. Physical Chemistry Chemical Physics, 2021, 23, 10706-10735.	2.8	25
20	High-entropy energy materials: challenges and new opportunities. Energy and Environmental Science, 2021, 14, 2883-2905.	30.8	282
21	Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Scientific Reports, 2021, 11, 5367.	3.3	21
22	Operando Characterization Techniques for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100004.	5.8	38
23	The Working Principle of a Li ₂ CO ₃ /LiNbO ₃ Coating on NCM for Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 2110-2125.	6.7	116
24	Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries. Cell Reports Physical Science, 2021, 2, 100465.	5.6	23
25	High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 7338-7345.	5.1	48
26	Influence of synthesis parameters on crystallization behavior and ionic conductivity of the Li4PS4I solid electrolyte. Scientific Reports, 2021, 11, 14073.	3.3	8
27	Highâ€Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage. Advanced Materials, 2021, 33, e2101342.	21.0	97
28	Highâ€Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage (Adv. Mater. 34/2021). Advanced Materials, 2021, 33, 2170269.	21.0	4
29	Cycling Performance and Limitations of LiNiO ₂ in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3020-3028.	17.4	39
30	Quasi-homogenous photocatalysis of quantum-sized Fe-doped TiO2 in optically transparent aqueous dispersions. Scientific Reports, 2021, 11, 17687.	3.3	22
31	Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter, 2021, 4, 3953-3966.	10.0	20
32	Single versus poly-crystalline layered oxide cathode materials for solid-state battery applications - a short review article. Current Opinion in Electrochemistry, 2021, 31, 100877.	4.8	16
33	Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode. Scientific Reports, 2021, 11, 23381.	3.3	8
34	An <i>in situ</i> structural study on the synthesis and decomposition of LiNiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1808-1820.	10.3	72
35	Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries. RSC Advances, 2020, 10, 1114-1119.	3.6	50
36	Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 3697-3708.	8.0	37

#	Article	IF	CITATIONS
37	Rational Design of Quasi-Zero-Strain NCM Cathode Materials for Minimizing Volume Change Effects in All-Solid-State Batteries., 2020, 2, 84-88.		66
38	From LiNiO ₂ to Li ₂ NiO ₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides. Chemistry of Materials, 2020, 32, 9211-9227.	6.7	28
39	Surface Modification Strategies for Improving the Cycling Performance of Niâ€Rich Cathode Materials. European Journal of Inorganic Chemistry, 2020, 2020, 3117-3130.	2.0	46
40	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO 2 Cathode in Li–Ion Cells. Batteries and Supercaps, 2020, 3, 965-965.	4.7	1
41	Lithium containing layered high entropy oxide structures. Scientific Reports, 2020, 10, 18430.	3.3	47
42	Investigations into the superionic glass phase of Li ₄ PS ₄ I for improving the stability of high-loading all-solid-state batteries. Inorganic Chemistry Frontiers, 2020, 7, 3953-3960.	6.0	18
43	Li ₇ GeS ₅ Br—An Argyrodite Li-Ion Conductor Prepared by Mechanochemical Synthesis. Inorganic Chemistry, 2020, 59, 12954-12959.	4.0	17
44	<i>In Situ</i> Monitoring of Thermally Induced Effects in Nickel-Rich Layered Oxide Cathode Materials at the Atomic Level. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57047-57054.	8.0	16
45	Li ₂ ZrO ₃ -Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS Applied Materials & Diterfaces, 2020, 12, 57146-57154.	8.0	90
46	Tailoring the protonic conductivity of porous yttria-stabilized zirconia thin films by surface modification. Physical Chemistry Chemical Physics, 2020, 22, 11519-11528.	2.8	14
47	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO ₂ Cathode in Li–lon Cells. Batteries and Supercaps, 2020, 3, 1021-1027.	4.7	12
48	The effect of gallium substitution on the structure and electrochemical performance of LiNiO ₂ in lithium-ion batteries. Materials Advances, 2020, 1, 639-647.	5 . 4	23
49	Enhancing the Electrochemical Performance of LiNi _{0.70} Co _{0.15} Mn _{0.15} O ₂ Cathodes Using a Practical Solution-Based Al ₂ O ₃ Coating. ACS Applied Materials & Solution-Based Al ₂ O ₃ Coating. ACS Applied Materials & Solution-Based Al ₂ O ₃ Coating. ACS Applied Materials & Solution-Based Al ₃	8.0	57
50	Understanding the Origin of Higher Capacity for Ni-Based Disordered Rock-Salt Cathodes. Chemistry of Materials, 2020, 32, 3447-3461.	6.7	16
51	Kinetic Limitations in Cycled Nickel-Rich NCM Cathodes and Their Effect on the Phase Transformation Behavior. ACS Applied Energy Materials, 2020, 3, 2821-2827.	5.1	25
52	Gassing Behavior of Highâ€Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry. Batteries and Supercaps, 2020, 3, 361-369.	4.7	31
53	Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20462-20468.	8.0	62
54	Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation. Electrochem, 2020, 1, 60-74.	3.3	35

#	Article	IF	CITATIONS
55	Visualization of Light Elements using 4D STEM: The Layeredâ€toâ€Rock Salt Phase Transition in LiNiO ₂ Cathode Material. Advanced Energy Materials, 2020, 10, 2001026.	19.5	43
56	Operando Gassing Studies of All-Solid-State Battery Cells. ECS Meeting Abstracts, 2020, MA2020-02, 890-890.	0.0	0
57	In Situ Studies for Understanding Intragranular Nanopore Evolution in Ni-rich Layered Oxide Cathode Material. Microscopy and Microanalysis, 2019, 25, 2032-2033.	0.4	0
58	Thin Films of Thermally Stable Ordered Mesoporous Rh ₂ O ₃ (I) for Visible-Light Photocatalysis and Humidity Sensing. ACS Applied Nano Materials, 2019, 2, 7126-7133.	5.0	9
59	Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chemistry of Materials, 2019, 31, 9664-9672.	6.7	174
60	Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction. Chemical Communications, 2019, 55, 11223-11226.	4.1	25
61	The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni _{1–<i>x</i>–<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>})O ₂ Cathode Materials. ACS Nano, 2019, 13, 10694-10704.	14.6	79
62	Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells. ACS Applied Energy Materials, 2019, 2, 7375-7384.	5.1	106
63	Reversible control of magnetism: on the conversion of hydrated FeF ₃ with Li to Fe and LiF. Journal of Materials Chemistry A, 2019, 7, 24005-24011.	10.3	6
64	General Synthesis of Ordered Mesoporous Rare-Earth Orthovanadate Thin Films and Their Use as Photocatalysts and Phosphors for Lighting Applications. ACS Applied Nano Materials, 2019, 2, 1063-1071.	5.0	19
65	Room temperature, liquid-phase Al ₂ O ₃ surface coating approach for Ni-rich layered oxide cathode material. Chemical Communications, 2019, 55, 2174-2177.	4.1	79
66	High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications, 2019, 100, 121-125.	4.7	125
67	Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO ₃ Surface Modification on the Electrochemical Performance. Chemistry of Materials, 2019, 31, 4330-4340.	6.7	33
68	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1900985.	21.0	319
69	Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy and Environmental Science, 2019, 12, 2433-2442.	30.8	241
70	Highâ€Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Advanced Materials, 2019, 31, e1806236.	21.0	412
71	Phase Transformation Behavior and Stability of LiNiO ₂ Cathode Material for Liâ€ion Batteries Obtained from Inâ€Situ Gas Analysis and Operando Xâ€Ray Diffraction. ChemSusChem, 2019, 12, 2240-2250.	6.8	146
72	Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries. Scientific Reports, 2019, 9, 5328.	3.3	91

#	Article	IF	CITATIONS
73	Robust Macroscopic Polarization of Block Copolymer–Templated Mesoporous Perovskiteâ€Type Thinâ€Film Ferroelectrics. Advanced Electronic Materials, 2019, 5, 1800287.	5.1	3
74	Hin und zurück – die Entwicklung von LiNiO ₂ als Kathodenaktivmaterial. Angewandte Chemie, 2019, 131, 10542-10569.	2.0	25
75	There and Back Again—The Journey of LiNiO ₂ as a Cathode Active Material. Angewandte Chemie - International Edition, 2019, 58, 10434-10458.	13.8	400
76	(Invited) Ordered Mesoporous Metal Oxide Thin Films: From Room Temperature Ferroelectrics to Tunable Magnetic Materials. ECS Meeting Abstracts, 2019, , .	0.0	0
77	Comparing Operando XRD and Dems to Investigate Metal-Substituted LiNiO2. ECS Meeting Abstracts, 2019, , .	0.0	0
78	Investigation into Mechanical Degradation of Lithium-Ion Batteries with Nickel-Rich Cathode Materials - A Long-Term Cycling Study. ECS Meeting Abstracts, 2019, , .	0.0	0
79	Artificial Composite Anode Comprising Highâ€Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithiumâ€Ion Batteries. Batteries and Supercaps, 2018, 1, 27-32.	4.7	8
80	Volume Changes of Graphite Anodes Revisited: A Combined <i>Operando</i> X-ray Diffraction and <i>In Situ</i> Pressure Analysis Study. Journal of Physical Chemistry C, 2018, 122, 8829-8835.	3.1	256
81	Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. ACS Energy Letters, 2018, 3, 992-996.	17.4	201
82	Synthesis, structural characterization and magnetic properties of ordered mesoporous Pr _{1a^2x} Ca _x MnO ₃ thin films. CrystEngComm, 2018, 20, 245-250.	2.6	4
83	Electrochemical Tuning of Magnetism in Ordered Mesoporous Transition-Metal Ferrite Films for Micromagnetic Actuation. ACS Applied Nano Materials, 2018, 1, 65-72.	5.0	24
84	Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture. ACS Omega, 2018, 3, 16706-16713.	3.5	27
85	Differential Electrochemical Mass Spectrometry in Lithium Battery Research., 2018,, 44-53.		4
86	Gas Evolution in All-Solid-State Battery Cells. ACS Energy Letters, 2018, 3, 2539-2543.	17.4	100
87	Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Applied Materials & Carbon Branch (1988) (1988	8.0	193
88	Ordered Mesoporous LiFe 5 O 8 Thinâ€Film Photoanodes for Water Splitting. ChemPhotoChem, 2018, 2, 1022-1026.	3.0	8
89	Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-lon Battery Full-Cells. ACS Applied Materials & Interfaces, 2018, 10, 20487-20498.	8.0	76
90	Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy and Environmental Science, 2018, 11, 2142-2158.	30.8	512

#	Article	IF	Citations
91	High entropy oxides for reversible energy storage. Nature Communications, 2018, 9, 3400.	12.8	643
92	Impact of Cathode Material Particle Size and Applied Pressure on the Cycling Performance of All-Solid-State Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
93	Interfacial Stability of Argyrodite-Based Solid Electrolytes in All-Solid-State Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
94	Electrochemical Tuning of Ordered Mesoporous Oxides with Spinel and Perovskite Structures for Reversible Control of Magnetization. ECS Meeting Abstracts, 2018, , .	0.0	0
95	E-MRS spring meeting 2016 symposium AA: solution processing and properties of functional oxide thin films and nanostructures II. Journal of Sol-Gel Science and Technology, 2017, 81, 311-312.	2.4	0
96	Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-lon Batteries. Journal of Physical Chemistry C, 2017, 121, 3286-3294.	3.1	472
97	Improving the capacity of lithium–sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials. Physical Chemistry Chemical Physics, 2017, 19, 8349-8355.	2.8	24
98	Sustainable and surfactant-free high-throughput synthesis of highly dispersible zirconia nanocrystals. Journal of Materials Chemistry A, 2017, 5, 16296-16306.	10.3	8
99	Applying Capacitive Energy Storage for In Situ Manipulation of Magnetization in Ordered Mesoporous Perovskite-Type LSMO Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22799-22807.	8.0	13
100	Electrochemical Cross-Talk Leading to Gas Evolution and Capacity Fade in LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Full-Cells. Journal of Physical Chemistry C, 2017, 121, 211-216.	3.1	57
101	Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26163-26171.	3.1	233
102	Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation. Journal of Physical Chemistry C, 2017, 121, 24381-24388.	3.1	242
103	Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries. Scientific Reports, 2017, 7, 13010.	3.3	12
104	The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2228-2233.	17.4	97
105	High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries. Analytical Chemistry, 2017, 89, 8122-8128.	6.5	42
106	Template-Free Electrodeposition of Uniform and Highly Crystalline Tin Nanowires from Organic Solvents Using Unconventional Additives. Electrochimica Acta, 2017, 246, 1016-1022.	5,2	6
107	(Invited) Applying Energy Storage to Tune the Magnetism of Large-Pore Ordered Mesoporous Metal Oxide Thin Films. ECS Meeting Abstracts, 2017, , .	0.0	0
108	Microwave synthesis of high-quality and uniform 4 nm ZnFe ₂ O ₄ nanocrystals for application in energy storage and nanomagnetics. Beilstein Journal of Nanotechnology, 2016, 7, 1350-1360.	2.8	32

#	Article	IF	CITATIONS
109	Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance. Beilstein Journal of Nanotechnology, 2016, 7, 1229-1240.	2.8	28
110	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	19.5	623
111	Lithium‧ulfur Batteries: Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	19.5	5
112	In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016, 8, 14048-14056.	5.6	64
113	In situ tuning of magnetization via topotactic lithium insertion in ordered mesoporous lithium ferrite thin films. Journal of Materials Chemistry C, 2016, 4, 8889-8896.	5.5	18
114	Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12726-12729.	10.3	20
115	On the gassing behavior of lithium-ion batteries with NCM523 cathodes. Journal of Solid State Electrochemistry, 2016, 20, 2961-2967.	2.5	76
116	The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2603-2608.	30.8	202
117	Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 10274-10282.	8.0	49
118	Gas Evolution in LiNi $<$ sub $>0.5<$ /sub $>$ Mn $<$ sub $>1.5<$ /sub $>$ O $<$ sub $>4<$ /sub $>$ /Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. Analytical Chemistry, 2016, 88, 2877-2883.	6.5	91
119	In Situ Characterization of Gassing Processes in Lithium-Ion Batteries By Dems-Deirs. ECS Meeting Abstracts, 2016, , .	0.0	0
120	A Link Between Lithium Diffusivity, Interplane Distance and Ni Redox State in Ni-Rich Ncm. ECS Meeting Abstracts, 2016, , .	0.0	0
121	Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging. Scientific Reports, 2015, 5, 15627.	3.3	104
122	Polymerâ€Templated Mesoporous Li ₄ Ti ₅ O ₁₂ as a Highâ€Rate and Longâ€Life Anode Material for Rechargeable Liâ€Ion Batteries. ChemNanoMat, 2015, 1, 415-421.	2.8	22
123	Highâ€Performance Lithium–Sulfur Batteries using Yolk–Shell Type Sulfur–Silica Nanocomposite Particles with Raspberryâ€Like Morphology. Energy Technology, 2015, 3, 830-833.	3.8	15
124	Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films with Cubic Pore Symmetry—On the Influence of Water on the Surface Oxygen Ion Transport. ACS Applied Materials & Long Representation (2015), 7, 11792-11801.	8.0	29
125	lonic Liquid-Derived Nitrogen-Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure—A Step Toward Durable High-Energy and High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 1674-1683.	6.7	76
126	Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests. Analytical Chemistry, 2015, 87, 5878-5883.	6.5	89

#	Article	IF	Citations
127	Template-Free Electrochemical Synthesis of High Aspect Ratio Sn Nanowires in Ionic Liquids: A General Route to Large-Area Metal and Semimetal Nanowire Arrays?. Chemistry of Materials, 2015, 27, 3830-3837.	6.7	38
128	Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20482-20486.	10.3	46
129	Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture. Journal of Power Sources, 2015, 296, 454-461.	7.8	69
130	Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries. Electrochemistry Communications, 2015, 60, 64-69.	4.7	56
131	Polymer-templated ordered large-pore mesoporous anatase–rutile TiO2:Ta nanocomposite films: Microstructure, electrical conductivity, and photocatalytic and photoelectrochemical properties. Catalysis Today, 2014, 225, 55-63.	4.4	16
132	Large-Pore Mesoporous Ho3Fe5O12 Thin Films with a Strong Room-Temperature Perpendicular Magnetic Anisotropy by Sol–Gel Processing. Chemistry of Materials, 2014, 26, 2337-2343.	6.7	13
133	Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Physical Chemistry Chemical Physics, 2014, 16, 18765-18771.	2.8	55
134	Ordered Mesoporous Thin Film Ferroelectrics of Biaxially Textured Lead Zirconate Titanate (PZT) by Chemical Solution Deposition. Chemistry of Materials, 2014, 26, 2195-2202.	6.7	27
135	Large Magnetoresistance and Electrostatic Control of Magnetism in Ordered Mesoporous La _{1–<i>x</i>} Ca _{<i>x</i>} MnO ₃ Thin Films. Chemistry of Materials, 2014, 26, 5745-5751.	6.7	24
136	Morphology, Microstructure, and Magnetic Properties of Ordered Large-Pore Mesoporous Cadmium Ferrite Thin Film Spin Glasses. Inorganic Chemistry, 2013, 52, 3744-3754.	4.0	38
137	Facile and General Synthesis of Thermally Stable Ordered Mesoporous Rare-Earth Oxide Ceramic Thin Films with Uniform Mid-Size to Large-Size Pores and Strong Crystalline Texture. Chemistry of Materials, 2013, 25, 4633-4642.	6.7	37
138	Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders. ACS Applied Materials & Eamp; Interfaces, 2013, 5, 7299-7307.	8.0	192
139	Ordered Mesoporous <i>β</i> â€MgMoO ₄ Thin Films for Lithiumâ€lon Battery Applications. Small, 2013, 9, 2541-2544.	10.0	27
140	Room Temperature Magnetic Rare-Earth Iron Garnet Thin Films with Ordered Mesoporous Structure. Chemistry of Materials, 2013, 25, 2527-2537.	6.7	33
141	Defect Chemistry of Oxide Nanomaterials with High Surface Area: Ordered Mesoporous Thin Films of the Oxygen Storage Catalyst CeO ₂ –ZrO ₂ . ACS Nano, 2013, 7, 2999-3013.	14.6	85
142	Toward ordered mesoporous rare-earth sesquioxide thin films via polymer templating: high temperature stable C-type Er2O3 with finely-tunable crystallite sizes. RSC Advances, 2012, 2, 7053.	3.6	6
143	Nanocrystalline NaTaO3 thin film materials with ordered 3D mesoporous and nanopillar-like structures through PIB-b-PEO polymer templating: towards high-performance UV-light photocatalysts. RSC Advances, 2012, 2, 5130.	3.6	19
144	Morphology-Controlled Synthesis of Nanocrystalline ÎAl ₂ O ₃ Thin Films, Powders, Microbeads, and Nanofibers with Tunable Pore Sizes from Preformed Oligomeric Oxo-Hydroxo Building Blocks. Chemistry of Materials, 2012, 24, 486-494.	6.7	46

#	Article	IF	Citations
145	Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains. Chemical Communications, 2012, 48, 4471.	4.1	81
146	Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries. Chemical Communications, 2012, 48, 6726.	4.1	125
147	Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr _{2< sub>O_{4< sub> and MCr_{2â€"⟨i>x⟨i>⟨ sub>Fe_{⟨i>x⟨ i>⟨ sub>O⟨sub>4⟨ sub> (M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes. Chemistry of Materials. 2012. 24. 155-165.}}}}	6.7	43
148	Thermal Conductivity of Highly-Ordered Mesoporous Titania Thin Films from 30 to 320 K. Journal of Physical Chemistry C, 2011, 115, 14606-14614.	3.1	35
149	Ordered Large-Pore Mesoporous Li ₄ Ti ₅ O ₁₂ Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure. Chemistry of Materials. 2011. 23. 4384-4393.	6.7	171
150	Next generation pseudocapacitor materials from sol–gel derived transition metal oxides. Journal of Sol-Gel Science and Technology, 2011, 57, 330-335.	2.4	55
151	Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts?. Nano Research, 2011, 4, 414-424.	10.4	44
152	Ordered Mesoporous αâ€Fe ₂ O ₃ (Hematite) Thinâ€Film Electrodes for Application in High Rate Rechargeable Lithium Batteries. Small, 2011, 7, 407-414.	10.0	127
153	Thermal Conductivity of Amorphous and Crystalline Mesoporous Titania Thin Films From 30 to 320 K., 2011,,.		0
154	Thermal Conductivity of Highly Ordered Amorphous and Crystalline Mesoporous Titania Thin Films. , 2010, , .		0
155	Exceptional Photocatalytic Activity of Ordered Mesoporous β-Bi ₂ O ₃ Thin Films and Electrospun Nanofiber Mats. Chemistry of Materials, 2010, 22, 3079-3085.	6.7	197
156	On the Correlation between Nanoscale Structure and Magnetic Properties in Ordered Mesoporous Cobalt Ferrite (CoFe ₂ O ₄) Thin Films. Nano Letters, 2010, 10, 2982-2988.	9.1	101
157	Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Materials, 2010, 9, 146-151.	27.5	2,801
158	Thermal Conductivity of Ordered Mesoporous Titania Films Made from Nanocrystalline Building Blocks and Solâ^'Gel Reagents. Journal of Physical Chemistry C, 2010, 114, 12451-12458.	3.1	43
159	Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. Journal of the American Chemical Society, 2010, 132, 6982-6990.	13.7	320
160	Ordered Mesoporous MFe ₂ O ₄ (M = Co, Cu, Mg, Ni, Zn) Thin Films with Nanocrystalline Walls, Uniform 16 nm Diameter Pores and High Thermal Stability: Template-Directed Synthesis and Characterization of Redox Active Trevorite. Inorganic Chemistry, 2010, 49, 11619-11626.	4.0	73
161	On the Correlation between Mechanical Flexibility, Nanoscale Structure, and Charge Storage in Periodic Mesoporous CeO ₂ Thin Films. ACS Nano, 2010, 4, 967-977.	14.6	127
162	Templated Nanocrystal-Based Porous TiO ₂ Films for Next-Generation Electrochemical Capacitors. Journal of the American Chemical Society, 2009, 131, 1802-1809.	13.7	887

#	Article	IF	Citations
163	Ordered Mesoporous Sb-, Nb-, and Ta-Doped SnO ₂ Thin Films with Adjustable Doping Levels and High Electrical Conductivity. ACS Nano, 2009, 3, 1373-1378.	14.6	175
164	Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths. Physical Chemistry Chemical Physics, 2009, 11, 3300.	2.8	2
165	Template-assisted preparation of films of transparent conductive indium tin oxide. Superlattices and Microstructures, 2008, 44, 686-692.	3.1	6
166	Vertically oriented hexagonal mesoporousÂfilms formed through nanometre-scaleÂepitaxy. Nature Materials, 2008, 7, 712-717.	27.5	148
167	Ordered Mesoporous Silicon through Magnesium Reduction of Polymer Templated Silica Thin Films. Nano Letters, 2008, 8, 3075-3079.	9.1	140
168	The Pseudocapacitance Behaviors of TiO2 (Anatase) Nanoparticles. ECS Transactions, 2007, 11, 101-111.	0.5	10
169	Preparation, texture and electrochemical properties of TiO2 films with highly ordered mesoporosity and controlled crystallinity. Studies in Surface Science and Catalysis, 2007, , 569-572.	1.5	1
170	Electrochromic Stability of WO3Thin Films with Nanometer-Scale Periodicity and Varying Degrees of Crystallinity. Journal of Physical Chemistry C, 2007, 111, 7200-7206.	3.1	96
171	Highly Organized Mesoporous TiO2 Films with Controlled Crystallinity: A Li-Insertion Study. Advanced Functional Materials, 2007, 17, 123-132.	14.9	158
172	Periodically Ordered Meso―and Macroporous SiO ₂ Thin Films and Their Induced Electrochemical Activity as a Function of Pore Hierarchy. Advanced Functional Materials, 2007, 17, 3241-3250.	14.9	64
173	Self-Assembled Metal Oxide Bilayer Films with "Single-Crystalline―Overlayer Mesopore Structure. Advanced Materials, 2007, 19, 1074-1078.	21.0	35
174	Illumination-induced properties of highly ordered mesoporous TiO2 layers with controlled crystallinity. Thin Solid Films, 2007, 515, 6541-6543.	1.8	15
175	Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration. Chemistry of Materials, 2006, 18, 2848-2854.	6.7	157
176	Highly Crystalline WO 3 Thin Films with Ordered 3D Mesoporosity and Improved Electrochromic Performance. Small, 2006, 2, 1203-1211.	10.0	180
177	Crystal-to-Crystal Phase Transition in Self-Assembled Mesoporous Iron Oxide Films. Angewandte Chemie - International Edition, 2006, 45, 781-784.	13.8	79
178	Generation of Self-Assembled 3D Mesostructured SnO2 Thin Films with Highly Crystalline Frameworks. Advanced Functional Materials, 2006, 16, 1433-1440.	14.9	92
179	Surfactant-Mediated Generation of Iso-Oriented Dense and Mesoporous Crystalline Metal-Oxide Layers. Advanced Materials, 2006, 18, 1827-1831.	21.0	50
180	Evaporation-Induced Self-Assembly (EISA) at Its Limit: Ultrathin, Crystalline Patterns by Templating of Micellar Monolayers. Advanced Materials, 2006, 18, 2260-2263.	21.0	78

#	Article	IF	CITATIONS
181	Transparent Conducting Films of Indium Tin Oxide with 3D Mesopore Architecture. Advanced Materials, 2006, 18, 2980-2983.	21.0	84
182	Thermally Stable Nanocrystalline \hat{I}^3 -Alumina Layers with Highly Ordered 3D Mesoporosity. Angewandte Chemie - International Edition, 2005, 44, 4589-4592.	13.8	182
183	Polyisobutylene-block-Poly(ethylene oxide) for Robust Templating of Highly Ordered Mesoporous Materials. Advanced Materials, 2005, 17, 1158-1162.	21.0	105
184	Synthesis of Dimeric Acridine Derived Antivirals ChemInform, 2005, 36, no.	0.0	0
185	Thermally Stable Nanocrystalline γ-Alumina Layers with Highly Ordered 3D Mesoporosity ChemInform, 2005, 36, no.	0.0	0
186	Self-Assembly and Crystallization Behavior of Mesoporous, Crystalline HfO2 Thin Films: A Model System for the Generation of Mesostructured Transition-Metal Oxides. Small, 2005, 1, 889-898.	10.0	72
187	Synthesis of Dimeric Acridine Derived Nucleic Acid Intercalators. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2005, 60, 89-98.	0.7	1
188	The generation of mesoporous CeO2 with crystalline pore walls using novel block copolymer templates. Studies in Surface Science and Catalysis, 2005, 156, 243-248.	1.5	16
189	The generation of mesostructured crystalline CeO2, ZrO2and CeO2–ZrO2films using evaporation-induced self-assembly. New Journal of Chemistry, 2005, 29, 237-242.	2.8	75
190	Mesostructured Crystalline Ceria with a Bimodal Pore System Using Block Copolymers and Ionic Liquids as Rational Templates. Chemistry of Materials, 2005, 17, 1683-1690.	6.7	122
191	From Hybrid Films to Mesoorganized Multi-metal-oxide Nanocrystalline Films (M3NF), preparation and characterization Materials Research Society Symposia Proceedings, 2004, 847, 308.	0.1	1
192	Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials, 2004, 3, 787-792.	27.5	327
193	Synthesis of dimeric acridine derived antivirals. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4983-4985.	2.2	11
194	Synthesis of pathogen inactivating nucleic acid intercalators. European Journal of Medicinal Chemistry, 2004, 39, 975-988.	5.5	5
195	Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates. Journal of the American Chemical Society, 2004, 126, 10534-10535.	13.7	299
196	Highly Crystalline Cubic Mesoporous TiO2with 10-nm Pore Diameter Made with a New Block Copolymer Template. Chemistry of Materials, 2004, 16, 2948-2952.	6.7	309