
Lian-Hua Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447148/publications.pdf Version: 2024-02-01

LIAN-HUA FU

#	Article	IF	CITATIONS
1	In Situ Sprayed Starvation/Chemodynamic Therapeutic Gel for Post‧urgical Treatment of IDH1 (R132H) Glioma. Advanced Materials, 2022, 34, e2103980.	21.0	67
2	Bioactive NIRâ€II Lightâ€Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration. Advanced Science, 2022, 9, e2102220.	11.2	25
3	Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano, 2021, 15, 1627-1639.	14.6	62
4	Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. Advanced Materials, 2021, 33, e2006892.	21.0	457
5	Biodegradable Calcium Phosphate Nanotheranostics with Tumorâ€Specific Activatable Cascade Catalytic Reactionsâ€Augmented Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2009848.	14.9	120
6	Metal peroxides for cancer treatment. Bioactive Materials, 2021, 6, 2698-2710.	15.6	46
7	Stretchable, Antifreezing, Nonâ€Drying, and Fastâ€Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection. Macromolecular Materials and Engineering, 2021, 306, 2100549.	3.6	17
8	Conquering the Hypoxia Limitation for Photodynamic Therapy. Advanced Materials, 2021, 33, e2103978.	21.0	262
9	A Versatile Calcium Phosphate Nanogenerator for Tumor Microenvironmentâ€activated Cancer Synergistic Therapy. Advanced Healthcare Materials, 2021, 10, e2101563.	7.6	30
10	Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. Chemical Engineering Journal, 2020, 388, 124232.	12.7	22
11	Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chemical Society Reviews, 2019, 48, 2698-2737.	38.1	131
12	Glucose Oxidaseâ€Instructed Multimodal Synergistic Cancer Therapy. Advanced Materials, 2019, 31, e1808325.	21.0	409
13	Biodegradable Manganese-Doped Calcium Phosphate Nanotheranostics for Traceable Cascade Reaction-Enhanced Anti-Tumor Therapy. ACS Nano, 2019, 13, 13985-13994.	14.6	299
14	Melanin/polydopamine-based nanomaterials for biomedical applications. Science China Chemistry, 2019, 62, 162-188.	8.2	91
15	Multifunctional cellulose-based hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1541-1562.	5.8	172
16	Cellulose/vaterite nanocomposites: Sonochemical synthesis, characterization, and their application in protein adsorption. Materials Science and Engineering C, 2019, 96, 426-435.	7.3	30
17	Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chemical Society Reviews, 2018, 47, 357-403.	38.1	190
18	The enhancement performances of cotton stalk fiber/ <scp>PVC</scp> composites by sequential two steps modification. Journal of Applied Polymer Science, 2018, 135, 46090.	2.6	13

Lian-Hua Fu

#	Article	IF	CITATIONS
19	Microwave-Hydrothermal Rapid Synthesis of Cellulose/Ag Nanocomposites and Their Antibacterial Activity. Nanomaterials, 2018, 8, 978.	4.1	20
20	Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption. Scientific Reports, 2018, 8, 8292.	3.3	43
21	Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47, 6454-6472.	38.1	537
22	Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites. Polymers, 2016, 8, 316.	4.5	24
23	Synthetic self-assembled homogeneous network hydrogels with high mechanical and recoverable properties for tissue replacement. Journal of Materials Chemistry B, 2016, 4, 4847-4854.	5.8	17
24	Green synthesis of silver nanoparticles with enhanced antibacterial activity using holocellulose as a substrate and reducing agent. RSC Advances, 2016, 6, 28140-28148.	3.6	22
25	Comparative study of cellulose/Ag nanocomposites using four cellulose types. Materials Letters, 2016, 171, 277-280.	2.6	20
26	Selective synthesis of Fe ₃ O ₄ , γ-Fe ₂ O ₃ , and α-Fe ₂ O ₃ using cellulose-based composites as precursors. RSC Advances, 2016, 6, 2135-2140.	3.6	80
27	Cu/C or Cu ₂ O/C Composites: Selective Synthesis, Characterization, and Applications in Water Treatment. Science of Advanced Materials, 2016, 8, 2045-2053.	0.7	17
28	Silver-reinforced cellulose hybrids with enhanced antibacterial activity: synthesis, characterization, and mechanism. RSC Advances, 2015, 5, 97359-97366.	3.6	17
29	Microwave-assisted rapid synthesis and characterization of CaF 2 particles-filled cellulose nanocomposites in ionic liquid. Carbohydrate Polymers, 2015, 121, 163-168.	10.2	22
30	Microwave-assisted rapid synthesis of lignocellulose/hydroxyapatite nanocomposites. Materials Letters, 2015, 159, 51-53.	2.6	14
31	Compare study cellulose/Mn 3 O 4 composites using four types of alkalis by sonochemistry method. Carbohydrate Polymers, 2015, 115, 373-378.	10.2	10
32	Comparative Study on the Nanocomposites of Cellulose and Alkali Earth Metal Fluorides (MF2, M = Ca,) Tj ETQq	0 0 0 rgBT 0.7	/Overlock 10
33	Research on the formation mechanism of composites from lignocelluloses and CaCO3. Materials Science and Engineering C, 2014, 44, 216-224.	7.3	12
34	Ultrasonic-Assisted Synthesis of Cellulose/Cu(OH) ₂ /CuO Hybrids and Its Thermal Transformation to CuO and Cu/C. Science of Advanced Materials, 2014, 6, 1117-1125.	0.7	13
35	Why to synthesize vaterite polymorph of calcium carbonate on the cellulose matrix via sonochemistry process?. Ultrasonics Sonochemistry, 2013, 20, 1188-1193.	8.2	32
36	Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal	10.2	38

transformation to CuO. Carbohydrate Polymers, 2013, 91, 162-168.

Lian-Hua Fu

#	Article	IF	CITATIONS
37	Cellulose/CaCO3 nanocomposites: Microwave ionic liquid synthesis, characterization, and biological activity. Carbohydrate Polymers, 2013, 92, 1669-1676.	10.2	46
38	Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method. Ultrasonics Sonochemistry, 2013, 20, 839-845.	8.2	34
39	Hydrothermal synthesis, characterization, and bactericidal activities of hybrid from cellulose and TiO2. Carbohydrate Polymers, 2013, 96, 15-20.	10.2	22

40 Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X=Cl,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 5

41	Zn5(OH)8Cl2·H2O sheets formed using cellulose as matrix via microwave-assisted method and its transformation to ZnO. Materials Letters, 2013, 92, 136-138.	2.6	18
42	Compared study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types. Carbohydrate Polymers, 2012, 90, 309-315.	10.2	25
43	Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass and Bioenergy, 2012, 47, 516-521.	5.7	34
44	Hydrothermal synthesis and characterization of wood powder/CaCO3 composites. Carbohydrate Polymers, 2012, 88, 1470-1475.	10.2	20