Lian-Hua Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447148/publications.pdf

Version: 2024-02-01

44 papers 3,599 citations

279798 23 h-index 243625 44 g-index

44 all docs 44 docs citations

times ranked

44

3448 citing authors

#	Article	IF	CITATIONS
1	Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47, 6454-6472.	38.1	537
2	Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. Advanced Materials, 2021, 33, e2006892.	21.0	457
3	Glucose Oxidaseâ€Instructed Multimodal Synergistic Cancer Therapy. Advanced Materials, 2019, 31, e1808325.	21.0	409
4	Biodegradable Manganese-Doped Calcium Phosphate Nanotheranostics for Traceable Cascade Reaction-Enhanced Anti-Tumor Therapy. ACS Nano, 2019, 13, 13985-13994.	14.6	299
5	Conquering the Hypoxia Limitation for Photodynamic Therapy. Advanced Materials, 2021, 33, e2103978.	21.0	262
6	Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chemical Society Reviews, 2018, 47, 357-403.	38.1	190
7	Multifunctional cellulose-based hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1541-1562.	5.8	172
8	Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chemical Society Reviews, 2019, 48, 2698-2737.	38.1	131
9	Biodegradable Calcium Phosphate Nanotheranostics with Tumorâ€5pecific Activatable Cascade Catalytic Reactionsâ€Augmented Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2009848.	14.9	120
10	Melanin/polydopamine-based nanomaterials for biomedical applications. Science China Chemistry, 2019, 62, 162-188.	8.2	91
11	Selective synthesis of Fe ₃ O ₄ , î³-Fe ₂ O ₃ , and î±-Fe ₂ O ₃ using cellulose-based composites as precursors. RSC Advances, 2016, 6, 2135-2140.	3.6	80
12	In Situ Sprayed Starvation/Chemodynamic Therapeutic Gel for Postâ€Surgical Treatment of IDH1 (R132H) Glioma. Advanced Materials, 2022, 34, e2103980.	21.0	67
13	Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano, 2021, 15, 1627-1639.	14.6	62
14	Cellulose/CaCO3 nanocomposites: Microwave ionic liquid synthesis, characterization, and biological activity. Carbohydrate Polymers, 2013, 92, 1669-1676.	10.2	46
15	Metal peroxides for cancer treatment. Bioactive Materials, 2021, 6, 2698-2710.	15.6	46
16	Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption. Scientific Reports, 2018, 8, 8292.	3.3	43
17	Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO. Carbohydrate Polymers, 2013, 91, 162-168.	10.2	38
18	Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass and Bioenergy, 2012, 47, 516-521.	5.7	34

#	Article	IF	Citations
19	Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method. Ultrasonics Sonochemistry, 2013, 20, 839-845.	8.2	34
20	Why to synthesize vaterite polymorph of calcium carbonate on the cellulose matrix via sonochemistry process?. Ultrasonics Sonochemistry, 2013, 20, 1188-1193.	8.2	32
21	Cellulose/vaterite nanocomposites: Sonochemical synthesis, characterization, and their application in protein adsorption. Materials Science and Engineering C, 2019, 96, 426-435.	7.3	30
22	A Versatile Calcium Phosphate Nanogenerator for Tumor Microenvironmentâ€activated Cancer Synergistic Therapy. Advanced Healthcare Materials, 2021, 10, e2101563.	7.6	30
23	Compared study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types. Carbohydrate Polymers, 2012, 90, 309-315.	10.2	25
24	Bioactive NIRâ€II Lightâ€Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration. Advanced Science, 2022, 9, e2102220.	11.2	25
25	Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites. Polymers, 2016, 8, 316.	4.5	24
26	Hydrothermal synthesis, characterization, and bactericidal activities of hybrid from cellulose and TiO2. Carbohydrate Polymers, 2013, 96, 15-20.	10.2	22
27	Microwave-assisted rapid synthesis and characterization of CaF 2 particles-filled cellulose nanocomposites in ionic liquid. Carbohydrate Polymers, 2015, 121, 163-168.	10.2	22
28	Green synthesis of silver nanoparticles with enhanced antibacterial activity using holocellulose as a substrate and reducing agent. RSC Advances, 2016, 6, 28140-28148.	3.6	22
29	Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. Chemical Engineering Journal, 2020, 388, 124232.	12.7	22
30	Hydrothermal synthesis and characterization of wood powder/CaCO3 composites. Carbohydrate Polymers, 2012, 88, 1470-1475.	10.2	20
31	Comparative study of cellulose/Ag nanocomposites using four cellulose types. Materials Letters, 2016, 171, 277-280.	2.6	20
32	Microwave-Hydrothermal Rapid Synthesis of Cellulose/Ag Nanocomposites and Their Antibacterial Activity. Nanomaterials, 2018, 8, 978.	4.1	20
33	Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X=Cl,) Tj ETQq1 1 C).784314 10.2	$_{18}^{rgBT}/Overloop$
34	Zn5(OH)8Cl2·H2O sheets formed using cellulose as matrix via microwave-assisted method and its transformation to ZnO. Materials Letters, 2013, 92, 136-138.	2.6	18
35	Silver-reinforced cellulose hybrids with enhanced antibacterial activity: synthesis, characterization, and mechanism. RSC Advances, 2015, 5, 97359-97366.	3.6	17
36	Synthetic self-assembled homogeneous network hydrogels with high mechanical and recoverable properties for tissue replacement. Journal of Materials Chemistry B, 2016, 4, 4847-4854.	5.8	17

#	Article	IF	CITATIONS
37	Stretchable, Antifreezing, Nonâ€Drying, and Fastâ€Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection. Macromolecular Materials and Engineering, 2021, 306, 2100549.	3.6	17
38	Cu/C or Cu ₂ O/C Composites: Selective Synthesis, Characterization, and Applications in Water Treatment. Science of Advanced Materials, 2016, 8, 2045-2053.	0.7	17
39	Microwave-assisted rapid synthesis of lignocellulose/hydroxyapatite nanocomposites. Materials Letters, 2015, 159, 51-53.	2.6	14
40	Ultrasonic-Assisted Synthesis of Cellulose/Cu(OH) ₂ /CuO Hybrids and Its Thermal Transformation to CuO and Cu/C. Science of Advanced Materials, 2014, 6, 1117-1125.	0.7	13
41	The enhancement performances of cotton stalk fiber/ <scp>PVC</scp> composites by sequential two steps modification. Journal of Applied Polymer Science, 2018, 135, 46090.	2.6	13
42	Research on the formation mechanism of composites from lignocelluloses and CaCO3. Materials Science and Engineering C, 2014, 44, 216-224.	7.3	12
43	Compare study cellulose/Mn 3 O 4 composites using four types of alkalis by sonochemistry method. Carbohydrate Polymers, 2015, 115, 373-378.	10.2	10

Comparative Study on the Nanocomposites of Cellulose and Alkali Earth Metal Fluorides (MF2, M = Ca,) Tj ETQq0 $_{0.7}^{0.7}$ gBT /Overlock 10 $_{10}^{0.7}$ gBT /Overlock 10