Mukeshd Doble

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4471325/mukeshd-doble-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

271
papers
7,885
h-index
77
g-index

279
ext. papers
4.4
avg, IF
L-index

#	Paper	IF	Citations
271	An study on pulmonary fibrosis inhibitors from and targeting TGF-IRI <i>Journal of Biomolecular Structure and Dynamics</i> , 2022 , 1-17	3.6	
270	Performance of thermophilic strain on the reduction of viscosity of crude oil under high pressure and high temperature conditions: Experiments and modeling. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 210, 110016	4.4	1
269	Comparative analysis of molecular and conventional methods for bacteriological water quality assessment in drinking water resources around Chennai. <i>Water Practice and Technology</i> , 2022 , 17, 708-7	f8 ⁹	
268	Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein <i>BMC Bioinformatics</i> , 2022 , 23, 180	3.6	1
267	Dual inhibitors of SARS-CoV-2 proteases: pharmacophore and molecular dynamics based drug repositioning and phytochemical leads. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 6324-	6337	16
266	Alkaloids of Nees. as potential inhibitors of cyclooxygenases - an study. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 1-11	3.6	1
265	Preparation of Curdlan sulphate - Chitosan nanoparticles as a drug carrier to target Mycobacterium smegmatis infected macrophages. <i>Carbohydrate Polymers</i> , 2021 , 258, 117686	10.3	4
264	Impact of Biosurfactants, Surfactin, and Rhamnolipid Produced from Bacillus subtilis and Pseudomonas aeruginosa, on the Enhanced Recovery of Crude Oil and Its Comparison with Commercial Surfactants. <i>Energy & Energy & E</i>	4.1	5
263	An expedient, one-pot, stepwise sequential approach for the regioselective synthesis of pyrazolines. <i>Journal of Chemical Research</i> , 2021 , 45, 326-333	0.6	1
262	Polyphenol-rich Indian ginger cultivars ameliorate GLUT4 activity in C2C12 cells, inhibit diabetes-related enzymes and LPS-induced inflammation: An in vitro study. <i>Journal of Food Biochemistry</i> , 2021 , 45, e13600	3.3	7
261	Fabrication of Nanostructured Scaffolds for Tissue Engineering Applications. <i>Springer Series in Biomaterials Science and Engineering</i> , 2021 , 317-334	0.6	O
260	Photoluminescence carbon nano dots for the conductivity based optical sensing of dopamine and bioimaging applications. <i>Optical Materials</i> , 2021 , 117, 111120	3.3	13
259	Arjunetin as a promising drug candidate against SARS-CoV-2: molecular dynamics simulation studies. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 1-22	3.6	1
258	Lockdown of mitochondrial Ca extrusion and subsequent resveratrol treatment kill HeLa cells by Ca overload. <i>International Journal of Biochemistry and Cell Biology</i> , 2021 , 139, 106071	5.6	О
257	A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2 RSC Advances, 2021, 11, 2000	o&7200	135
256	Computational approach identifies protein off-targets for Isoniazid-NAD adduct: hypothesizing a possible drug resistance mechanism in. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 38, 1697-	13-10	4
255	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein. <i>PLoS ONE</i> , 2020 , 15, e023248	23.7	4

(2020-2020)

254	Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 29, 102232	6	7
253	Diarylidenecyclopentanone derivatives as potent anti-inflammatory and anticancer agents. <i>Medicinal Chemistry Research</i> , 2020 , 29, 1579-1589	2.2	2
252	Production and investigation of the physico-chemical properties of MEL-A from glycerol and coconut water. <i>World Journal of Microbiology and Biotechnology</i> , 2020 , 36, 88	4.4	4
251	Fermentative hydrogen production and bioelectricity generation from food based industrial waste: An integrative approach. <i>Bioresource Technology</i> , 2020 , 310, 123447	11	13
250	Synthesis of novel spirobibenzopyrans as potent anticancer leads inducing apoptosis in HeLa cells. Bioorganic and Medicinal Chemistry Letters, 2020 , 30, 127199	2.9	3
249	Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages. <i>Materials Science and Engineering C</i> , 2020 , 108, 110379	8.3	3
248	Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. <i>Materials Science and Engineering C</i> , 2020 , 109, 110527	8.3	36
247	Biopolymer film fabrication for skin mimetic tissue regenerative wound dressing applications. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2020 , 1-12	3	6
246	Hydroxy Piperlongumines: Synthesis, Antioxidant, Cytotoxic Effect on Human Cancer Cell Lines, Inhibitory Action and ADMET Studies. <i>ChemistrySelect</i> , 2020 , 5, 11778-11786	1.8	1
245	A Mechanistic Review on Medicinal Mushrooms-Derived Bioactive Compounds: Potential Mycotherapy Candidates for Alleviating Neurological Disorders. <i>Planta Medica</i> , 2020 , 86, 1161-1175	3.1	10
244	Potential of pyrroquinazoline alkaloids from Nees. as inhibitors of 5-LOX - a computational and an study. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 1-12	3.6	3
243	Industrial production and applications of 知inear and branched glucans . <i>Indian Chemical Engineer</i> , 2020 , 1-15	1	5
242	Design of photoluminescence point-of-care membrane strip for the detection of dopamine. <i>Materials Letters</i> , 2020 , 277, 128316	3.3	9
241	Bioelectricity generation and analysis of anode biofilm metabolites from septic tank wastewater in microbial fuel cells. <i>International Journal of Energy Research</i> , 2020 , 45, 17244	4.5	6
240	Synthesis, Characterization, and Biological Activity of Aminated Zymosan. ACS Omega, 2020, 5, 15973-1	5982	9
239	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)A cell division protein 2020 , 15, e0232482		
238	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) cell division protein 2020 , 15, e0232482		
237	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) cell division protein 2020 , 15, e0232482		

236	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) Cell division protein 2020 , 15, e0232482		
235	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)A cell division protein 2020 , 15, e0232482		
234	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) a cell division protein 2020 , 15, e0232482		
233	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) cell division protein 2020 , 15, e0232482		
232	Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ) a cell division protein 2020 , 15, e0232482		
231	Cyclic E(1, 2)-glucan blended poly DL lactic co glycolic acid (PLGA 10:90) nanoparticles for drug delivery. <i>Heliyon</i> , 2019 , 5, e02289	3.6	2
230	Chalcone-Thiazole Hybrids: Rational Design, Synthesis, and Lead Identification against 5-Lipoxygenase. <i>ACS Medicinal Chemistry Letters</i> , 2019 , 10, 1415-1422	4.3	8
229	Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential. <i>Journal of Materials Science: Materials in Medicine</i> , 2019 , 30, 113	4.5	9
228	A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE2 mediated anticancer properties. <i>New Journal of Chemistry</i> , 2019 , 43, 834-846	3.6	7
227	Theranostic Calcium Phosphate Nanoparticles With Potential for Multimodal Imaging and Drug Delivery. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 126	5.8	15
226	Synthesis of diarylidenecyclohexanone derivatives as potential anti-inflammatory leads against COX-2/mPGES1 and 5-LOX. <i>New Journal of Chemistry</i> , 2019 , 43, 9012-9020	3.6	7
225	Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 6872-6880	1.3	13
224	Pharmacophore based approach to screen and evaluate novel Mycobacterium cell division inhibitors targeting FtsZ - A modelling and experimental study. <i>European Journal of Pharmaceutical Sciences</i> , 2019 , 135, 103-112	5.1	6
223	Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. <i>Carbohydrate Polymers</i> , 2019 , 218, 53-62	10.3	40
222	Food Sources of Antidiabetic Phenolic Compounds 2019 , 45-82		1
221	Acyl and Benzyl-C-ID-Glucosides: Synthesis and Biostudies for Glucose-Uptake-Promoting Activity in C2C12 Mytotubes. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 6053-6070	3.2	4
220	Synergistic Behavior of Phytophenolics with Antidiabetic Drugs 2019 , 123-143		1
219	Probiotics, Prebiotics, and Fibers in Nutritive and Functional Beverages 2019 , 315-367		8

218	Modulation of biological properties by grain refinement and surface modification on titanium surfaces for implant-related infections. <i>Journal of Materials Science</i> , 2019 , 54, 13265-13282	4.3	9
217	Role of Phenolic Phytochemicals in Diabetes Management 2019 ,		3
216	5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. <i>Bioorganic and Medicinal Chemistry</i> , 2019 , 27, 3745-3759	3.4	29
215	2D QSAR Analysis of Substituted Quinoxalines for their Antitubercular and Antileptospiral Activities. <i>Current Computer-Aided Drug Design</i> , 2019 , 15, 182-192	1.4	2
214	Microbial Production and Applications of Mannosylerythritol, Cellobiose and Trehalose Lipids 2019 , 81-	-105	
213	Development of a Next-Generation Fluorescent Turn-On Sensor to Simultaneously Detect and Detoxify Mercury in Living Samples. <i>Analytical Chemistry</i> , 2019 , 91, 3533-3538	7.8	31
212	Polysaccharide-based hydrogels for targeted drug delivery 2019 , 343-382		4
211	Design, synthesis and identification of novel coumaperine derivatives for inhibition of human 5-LOX: Antioxidant, pseudoperoxidase and docking studies. <i>Bioorganic and Medicinal Chemistry</i> , 2019 , 27, 604-619	3.4	6
210	Structural characterization and applications of a novel polysaccharide produced by Azospirillum lipoferum MTCC 2306. <i>World Journal of Microbiology and Biotechnology</i> , 2019 , 35, 17	4.4	1
209	Design of antimicrobial polycaprolactam nanocomposite by immobilizing subtilisin conjugated Au/Ag core-shell nanoparticles for biomedical applications. <i>Materials Science and Engineering C</i> , 2019 , 94, 656-665	8.3	21
208	Drug and ion releasing tetracalcium phosphate based dual action cement for regenerative treatment of infected bone defects. <i>Ceramics International</i> , 2018 , 44, 9227-9235	5.1	8
207	Common structural and pharmacophoric features of mPGES-1 and LTC4S. <i>Future Medicinal Chemistry</i> , 2018 , 10, 259-268	4.1	1
206	Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. <i>Drug Delivery and Translational Research</i> , 2018 , 8, 1066-1077	6.2	23
205	Dual nanofibrous bioactive coating and antimicrobial surface treatment for infection resistant titanium implants. <i>Progress in Organic Coatings</i> , 2018 , 121, 112-119	4.8	24
204	Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 62-71	9.3	43
203	Electrospun PCL/HA coated friction stir processed AZ31/HA composites for degradable implant applications . <i>Journal of Materials Processing Technology</i> , 2018 , 252, 398-406	5.3	35
202	Ligand-based Modeling for the Prediction of Pharmacophore Features for Multi-targeted Inhibition of the Arachidonic Acid Cascade. <i>Molecular Informatics</i> , 2018 , 37, 1700073	3.8	2
201	Silver Loaded Nanofibrous Curdlan Mat for Diabetic Wound Healing: An In Vitro and In Vivo Study. Macromolecular Materials and Engineering, 2018, 303, 1800234	3.9	10

200 Preventive and Therapeutic Effects of Dietary Fibers Against Cardiovascular Diseases **2018**, 365-393

199	Albumin capped carbon-gold (C-Au) nanocomposite as an optical sensor for the detection of Arsenic(III). <i>Optical Materials</i> , 2018 , 84, 339-344	3.3	14
198	An efficient and facile green synthesis of bisindole methanes as potential Mtb FtsZ inhibitors. <i>Chemical Biology and Drug Design</i> , 2018 , 92, 1933-1939	2.9	7
197	Mathematical modelling of AHL production in Exiguobacterium MPO strain. <i>Biochemical Engineering Journal</i> , 2018 , 138, 54-62	4.2	0
196	Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery. Journal of Nanoscience and Nanotechnology, 2018 , 18, 2318-2324	1.3	11
195	Influence of magnesium particles and Pluronic F127 on compressive strength and cytocompatibility of nanocomposite injectable and moldable beads for bone regeneration. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 88, 453-462	4.1	10
194	Pyridazine-based heteroleptic copper(II) complexes as potent anticancer drugs by inducing apoptosis and S-phase arrest in breast cancer cell. <i>Inorganica Chimica Acta</i> , 2018 , 482, 160-169	2.7	5
193	Prebiotics and Probiotics in Altering Microbiota: Implications in Colorectal Cancer 2018 , 403-413		2
192	Synthesis and characterization of biocompatible carbon-gold (C-Au) nanocomposites and their biomedical applications as an optical sensor for creatinine detection and cellular imaging. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 1267-1278	8.5	21
191	Kinetic and thermodynamic behavior of the biodegradation of waxy crude oil using Bacillus subtilis. Journal of Petroleum Science and Engineering, 2018, 160, 412-421	4.4	8
190	Additive manufacturing technologies: an overview of challenges and perspective of using electrospraying. <i>Nanocomposites</i> , 2018 , 4, 190-214	3.4	10
189	Synthesis of Unsymmetrical Linear Diarylheptanoids and their Enantiomers and Antiproliferative Activity Studies. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 6379-6387	3.2	2
188	Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiOINanocomposite Coatings. <i>Nanomaterials</i> , 2018 , 8,	5.4	44
187	Understanding substrate specificity and enantioselectivity of carbonyl reductase from Candida parapsilosis ATCC 7330 (CpCR): Experimental and modeling studies. <i>Molecular Catalysis</i> , 2018 , 460, 40-4	4 <i>3</i> ·3	3
186	Nanostructure coated AZ31 magnesium cylindrical mesh cage for potential long bone segmental defect repair applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 690-698	6	9
185	Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. <i>European Journal of Medicinal Chemistry</i> , 2018 , 158, 34-50	6.8	32
184	Microbial cyclic E(1-a),(1-a)-glucans as potential drug carriers: Interaction studies between cyclic Eglucans isolated from Bradyrhizobium japonicum and betulinic acid. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 203, 494-500	4.4	5
183	Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2017 , 105, 1075-108	32 ^{3.5}	11

(2016-2017)

182	Phytochemicals as multi-target inhibitors of the inflammatory pathway- A modeling and experimental study. <i>Biochemical and Biophysical Research Communications</i> , 2017 , 484, 467-473	3.4	11
181	Transport of anionic azo dyes from aqueous solution to gemini surfactant-modified wheat bran: Synchrotron infrared, molecular interaction and adsorption studies. <i>Science of the Total Environment</i> , 2017 , 595, 723-732	10.2	41
180	Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. <i>Journal of Materials Science: Materials in Medicine</i> , 2017 , 28, 95	4.5	14
179	Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. <i>Materials Science and Engineering C</i> , 2017 , 76, 1196-1204	8.3	100
178	Effect of biosurfactants produced by Bacillus subtilis and Pseudomonas aeruginosa on the formation kinetics of methane hydrates. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 43, 156-16	66 6	17
177	Electrospun Nanofibers of Curdlan (日,3 Glucan) Blend as a Potential Skin Scaffold Material. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1600417	3.9	29
176	Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. <i>Phytomedicine</i> , 2017 , 37, 10-13	6.5	52
175	Hybrid drug combination: Anti-diabetic treatment of type 2 diabetic Wistar rats with combination of ellagic acid and pioglitazone. <i>Phytomedicine</i> , 2017 , 37, 4-9	6.5	34
174	Environmentally benign tetramethylguanidinium cation based ionic liquids. <i>New Journal of Chemistry</i> , 2017 , 41, 12268-12277	3.6	13
173	Betanin immobilized LDPE as antimicrobial food wrapper. <i>LWT - Food Science and Technology</i> , 2017 , 80, 131-135	5.4	10
172	Mutation at G103 of MtbFtsZ Altered their Sensitivity to Coumarins. <i>Frontiers in Microbiology</i> , 2017 , 8, 578	5.7	8
171	Transcriptional Regulation of mPGES1 in Cancer: An Alternative Approach to Drug Discovery?. <i>Current Drug Targets</i> , 2017 , 18, 119-131	3	5
170	Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 135	4.5	4
169	Influence of thermophilic Bacillus subtilis YB7 on the biodegradation of long chain paraffinic hydrocarbons (C16H34 to C36H74). <i>RSC Advances</i> , 2016 , 6, 82541-82552	3.7	1
168	Efficacy of Bacillus subtilis for the biodegradation and viscosity reduction of waxy crude oil for enhanced oil recovery from mature reservoirs. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2016 , 38, 2327-2335	1.6	5
167	FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. <i>European Journal of Medicinal Chemistry</i> , 2016 , 123, 557-567	6.8	9
166	Cyclic E(1-a) (1-a) glucan/carrageenan hydrogels for wound healing applications. <i>RSC Advances</i> , 2016 , 6, 98545-98553	3.7	27
165	Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. <i>Preparative Biochemistry and Biotechnology</i> , 2016 , 46, 109-15	2.4	26

164	2-Amino-4-aryl thiazole: a promising scaffold identified as a potent 5-LOX inhibitor. <i>RSC Advances</i> , 2016 , 6, 19271-19279	3.7	13
163	Probiotics, prebiotics and colorectal cancer prevention. <i>Baillierefs Best Practice and Research in Clinical Gastroenterology</i> , 2016 , 30, 119-31	2.5	125
162	Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 386-97	4.3	4
161	New pyridazine-based binuclear nickel(II), copper(II) and zinc(II) complexes as prospective anticancer agents. <i>New Journal of Chemistry</i> , 2016 , 40, 2451-2465	3.6	46
160	Probiotics and Bioactive Carbohydrates in Colon Cancer Management 2016,		4
159	In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. <i>Materials Science and Engineering C</i> , 2016 , 59, 356-367	8.3	68
158	Nanoformulations of polyphenols for prevention and treatment of cardiovascular and metabolic disorders 2016 , 107-151		2
157	Characterization and biological activities of cyclic (1日間, 1日間)-回lucans from Bradyrhizobium japonicum. <i>Biotechnology Letters</i> , 2016 , 38, 1519-25	3	7
156	Process optimization and kinetic modelling of cyclic (1-क) 1-6)-Eglucans production from Bradyrhizobium japonicum MTCC120. <i>Journal of Biotechnology</i> , 2016 , 226, 35-43	3.7	8
155	Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating. <i>Materials Science and Engineering C</i> , 2016 , 65, 43-50	8.3	51
154	Mannosylerythritol Lipid-A as a Pour Point Depressant for Enhancing the Low-Temperature Fluidity of Biodiesel and Hydrocarbon Fuels. <i>Energy & Energy & Ener</i>	4.1	15
153	Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. <i>European Journal of Medicinal Chemistry</i> , 2016 , 124, 428-434	6.8	13
152	Characterization and sorting of cells based on stiffness contrast in a microfluidic channel. <i>RSC Advances</i> , 2016 , 6, 74704-74714	3.7	27
151	Papain immobilized polyurethane as an ureteral stent material. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 723-31	3.5	5
150	Inhibition of microsomal prostaglandin E synthase-1 by phenanthrene imidazoles: a QSAR study. <i>Medicinal Chemistry Research</i> , 2015 , 24, 2213-2226	2.2	1
149	Design of biocomposite materials for bone tissue regeneration. <i>Materials Science and Engineering C</i> , 2015 , 57, 452-63	8.3	186
148	Polydimethyl siloxane nanocomposites: Their antifouling efficacy in vitro and in marine conditions. <i>International Biodeterioration and Biodegradation</i> , 2015 , 104, 307-314	4.8	39
147	Accelerated Self-Hardening Tetracalcium Phosphate Based Bone Cement with Enhanced Strength and Biological Behaviour. <i>Transactions of the Indian Institute of Metals</i> , 2015 , 68, 299-304	1.2	5

(2014-2015)

146	A novel microwave recipe for an antibiofilm titanium surface. <i>Materials Science and Engineering C</i> , 2015 , 56, 215-22	8.3	1
145	ECarrageenan from marine red algae, Kappaphycus alvarezii [A functional food to prevent colon carcinogenesis. <i>Journal of Functional Foods</i> , 2015 , 15, 354-364	5.1	51
144	Biocompatible Etarrageenan-Emaghemite nanocomposite for biomedical applications - synthesis, characterization and in vitro anticancer efficacy. <i>Journal of Nanobiotechnology</i> , 2015 , 13, 18	9.4	26
143	Physicochemical characterization of wheat bran and Kappaphycus alvarezii dietary fibres and their ability to bind mutagens, PhIP, Trp-P-2, AE and BP. LWT - Food Science and Technology, 2015, 63, 169-17	6 ^{5.4}	7
142	Ellagic acid potentiates insulin sensitising activity of pioglitazone in L6 myotubes. <i>Journal of Functional Foods</i> , 2015 , 15, 1-10	5.1	24
141	Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. <i>PLoS ONE</i> , 2015 , 10, e0121665	3.7	28
140	Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. <i>International Biodeterioration and Biodegradation</i> , 2015 , 105, 168-177	4.8	31
139	Bacterial resistance in biofilm-associated bacteria. <i>Future Microbiology</i> , 2015 , 10, 1743-50	2.9	87
138	Biosurfactant from Pseudomonas species with waxes as carbon source Their production, modeling and properties. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 31, 100-111	6.3	25
137	Bioremediation of Coastal and Marine Pollution due to Crude Oil Using a Microorganism Bacillus subtilis. <i>Procedia Engineering</i> , 2015 , 116, 213-220		21
136	Fast degradation and viscosity reduction of waxy crude oil and model waxy crude oil using Bacillus subtilis. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 134, 158-166	4.4	19
135	Magnetoimpedance studies on urine treated Co66Ni7Si7B20 ribbons. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 394, 309-317	2.8	
134	Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 59	5.8	17
133	Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. <i>Biosensors and Bioelectronics</i> , 2015 , 68, 688-698	11.8	133
132	Physicochemical and structural characterisation of marine algae Kappaphycus alvarezii and the ability of its dietary fibres to bind mutagenic amines. <i>Journal of Applied Phycology</i> , 2014 , 26, 2183-2191	3.2	11
131	Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior. <i>Materials Science and Engineering C</i> , 2014 , 39, 315-24	8.3	71
130	Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. <i>Journal of Materials Science: Materials in Medicine</i> , 2014 , 25, 975-88	4.5	67
129	Achromobacter denitrificans SP1 produces pharmaceutically active 25C prodigiosin upon utilizing hazardous di(2-ethylhexyl)phthalate. <i>Bioresource Technology</i> , 2014 , 171, 482-6	11	14

128	Toxicity of high glycolic poly(DL-lactic-co-glycolic acid) stabilized ruthenium nanoparticles against human promyelocytic leukemia cells. <i>RSC Advances</i> , 2014 , 4, 11438	3.7	8
127	Chalcone coating on cotton cloth - an approach to reduce attachment of live microbes. <i>Biomaterials Science</i> , 2014 , 2, 990-995	7.4	11
126	Water dispersible Ag@polyaniline-pectin as supercapacitor electrode for physiological environment. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5012-5019	7.3	36
125	Experimental and theoretical studies on Gallic acid assisted EDC/NHS initiated crosslinked collagen scaffolds. <i>Materials Science and Engineering C</i> , 2014 , 43, 164-71	8.3	31
124	Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 283-96	3.2	44
123	Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor plusubtypes: an in silico approach. <i>Journal of Applied Toxicology</i> , 2014 , 34, 754-65	4.1	57
122	Characterization and applications of cyclic E(1,2)-glucan produced from R. meliloti. <i>RSC Advances</i> , 2014 , 4, 11393	3.7	13
121	Production of acylated homoserine lactone by a novel marine strain of Proteus vulgaris and inhibition of its swarming by phytochemicals. <i>Microbiology (United Kingdom)</i> , 2014 , 160, 2170-2177	2.9	1
120	Combination therapy: a new strategy to manage diabetes and its complications. <i>Phytomedicine</i> , 2014 , 21, 123-30	6.5	54
119	Synthesis of new class of spirocarbocycle derivatives by multicomponent domino reaction and their evaluation for antimicrobial, anticancer activity and molecular docking studies. <i>European Journal of Medicinal Chemistry</i> , 2014 , 83, 190-207	6.8	28
118	Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique. <i>PLoS ONE</i> , 2014 , 9, e96152	3.7	12
117	Generation of drugs coated iron nanoparticles through high energy ball milling. <i>Journal of Applied Physics</i> , 2014 , 115, 124906	2.5	2
116	Functionalized polycaprolactam as an active food package for antibiofilm activity and extended shelf life. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 461-8	6	10
115	Influence of Surfactant Variation on Effective Anisotropy and Magnetic Properties of Mechanically Milled Magnetite Nanoparticles and Their Biocompatibility. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	3
114	Self-assembly of surfactin in aqueous solution: role of divalent counterions. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 116, 396-402	6	40
113	A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant. <i>Materials Science and Engineering C</i> , 2014 , 40, 212-8	8.3	6
112	Wettability and In Vitro Bioactivity Studies on Titanium Rods Processed by Equal Channel Angular Pressing. <i>Transactions of the Indian Institute of Metals</i> , 2013 , 66, 299-304	1.2	9
111	Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. <i>Bioresource Technology</i> , 2013 , 148, 78-85	11	91

110	Antithyroid agents and QSAR studies: inhibition of lactoperoxidase-catalyzed iodination reaction by isochromene-1-thiones. <i>Medicinal Chemistry Research</i> , 2013 , 22, 4810-4817	2.2	4
109	Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. <i>Phytomedicine</i> , 2013 , 20, 488-94	6.5	61
108	Cyclic Eglucans from Microorganisms. SpringerBriefs in Microbiology, 2013,		6
107	Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. <i>FEMS Microbiology Letters</i> , 2013 , 343, 34-41	2.9	49
106	Combination of phenylpropanoids with 5-fluorouracil as anti-cancer agents against human cervical cancer (HeLa) cell line. <i>Phytomedicine</i> , 2013 , 20, 151-8	6.5	69
105	Expeditious synthesis, antibacterial activity evaluation and GQSAR studies of 3-bisoxindoles, 2-oxindolyl-2-hydroxyindan-1,3-diones and 2-oxindolyl-2-hydroxyacenaphthylen-1-ones. <i>RSC Advances</i> , 2013 , 3, 496-507	3.7	17
104	Characteristics of bacterial biofilm associated with implant material in clinical practice. <i>Polymer Journal</i> , 2013 , 45, 137-152	2.7	48
103	High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem. <i>Biomedicine and Pharmacotherapy</i> , 2013 , 67, 431-6	7.5	26
102	Cyclic E(1, 2)-glucan production by Rhizobium meliloti MTCC 3402. <i>Process Biochemistry</i> , 2013 , 48, 1848-	1.8.54	9
101	Barnacle adhesion on natural and synthetic substrates: Adhesive structure and composition. <i>International Journal of Adhesion and Adhesives</i> , 2013 , 41, 140-143	3.4	11
100	Effect of d-amino acids on collagen fibrillar assembly and stability: Experimental and modelling studies. <i>Biochemical Engineering Journal</i> , 2013 , 75, 92-100	4.2	11
99	In vitro biocompatiblity of modified polycarbonate as a biomaterial. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 108, 191-8	6	8
98	Non-peptidyl insulin mimetics as a potential antidiabetic agent. <i>Drug Discovery Today</i> , 2013 , 18, 748-55	8.8	23
97	Synthesis and Characterization of Hydrophilic High Glycolic Acid P oly(dl-Lactic-co-Glycolic Acid)/Polycaprolactam/Polyvinyl Alcohol Blends and Their Biomedical Application as a Ureteral Material. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 751-760	3.9	16
96	Functionalization of iron oxide nanoparticles with biosurfactants and biocompatibility studies. Journal of Biomedical Nanotechnology, 2013 , 9, 751-64	4	25
95	Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. <i>PLoS ONE</i> , 2013 , 8, e63311	3.7	57
94	Synthesis, leptospirocidal activity and QSAR analysis of novel quinoxaline derivatives. <i>Medicinal Chemistry</i> , 2013 , 9, 275-86	1.8	4
93	Bisphenol A and metabolites released by biodegradation of polycarbonate in seawater. <i>Environmental Chemistry Letters</i> , 2012 , 10, 29-34	13.3	14

92	Computational approaches to enhance activity of taxanes as antimitotic agent. <i>Medicinal Chemistry Research</i> , 2012 , 21, 2557-2570	2.2	1
91	Comparative characterization of renal calculi from patients with clinical disorders. <i>Clinical Biochemistry</i> , 2012 , 45, 1097-8	3.5	1
90	Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. <i>Journal of Biomedical Nanotechnology</i> , 2012 , 8, 140-8	4	29
89	Green Synthesis of Protein Stabilized Silver Nanoparticles Using Pseudomonas fluorescens, a Marine Bacterium, and Its Biomedical Applications When Coated on Polycaprolactam. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 5230-5239	3.9	30
88	Stereochemical preference of Candida parapsilosis ATCC 7330 mediated deracemization: E- versus Z-aryl secondary alcohols. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 1360-1368		18
87	L-Asparaginase as potent anti-leukemic agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukaemia. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 2144-59	3.2	36
86	Production and downstream processing of (1-a)-ED-glucan from mutant strain of Agrobacterium sp. ATCC 31750. <i>AMB Express</i> , 2012 , 2, 31	4.1	44
85	Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. <i>Fungal Diversity</i> , 2012 , 55, 37-46	17.6	32
84	QSAR studies on substituted 3- or 4-phenyl-1,8-naphthyridine derivatives as antimicrobial agents. <i>Medicinal Chemistry Research</i> , 2012 , 21, 788-795	2.2	8
83	Antibacterial activities of 4-substituted-2-[(E)-{(1S,2R)/(1R,2S)-1-hydroxy-1-phenylpropan-2-ylimino}methyl]phenol. <i>Chemical Biology and Drug Design</i> , 2012 , 79, 177-85	2.9	4
82	Chalcone embedded polyurethanes as a biomaterial: Synthesis, characterization and antibacterial adhesion. <i>Carbohydrate Polymers</i> , 2012 , 87, 353-360	10.3	22
81	Computational approaches to improve aggrecanase-1 inhibitory activity of (4-keto) phenoxy) methyl biphenyl-4-sulfonamide: group based QSAR and docking studies. <i>Medicinal Chemistry</i> , 2012 , 8, 673-82	1.8	2
80	Immobilization of subtilisin on polycaprolactam for antimicrobial food packaging applications. Journal of Agricultural and Food Chemistry, 2011 , 59, 10869-78	5.7	25
79	Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. <i>Journal of Biomaterials Applications</i> , 2011 , 26, 227-52	2.9	35
78	Interaction of cinnamic acid derivatives with commercial hypoglycemic drugs on 2-deoxyglucose uptake in 3T3-L1 adipocytes. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 9835-44	5.7	43
77	Kinetic and Scanning Transmission Electron Microscopy Investigations on a MCM-41 Supported Cluster Derived Enantioselective Ruthenium Nanocatalyst. <i>ACS Catalysis</i> , 2011 , 1, 511-518	13.1	6
76	In silico engineering of L-asparaginase to have reduced glutaminase side activity for effective treatment of acute lymphoblastic leukemia. <i>Journal of Pediatric Hematology/Oncology</i> , 2011 , 33, 617-21	1.2	10
75	Synthesis, in vitro antitubercular activity and 3D-QSAR of novel quinoxaline derivatives. <i>Chemical Biology and Drug Design</i> , 2011 , 78, 988-98	2.9	23

(2010-2011)

74	Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. <i>Phytomedicine</i> , 2011 , 18, 285-91	6.5	35
73	Docking studies on novel analogues of 8 methoxy fluoroquinolones against GyrA mutants of Mycobacterium tuberculosis. <i>BMC Structural Biology</i> , 2011 , 11, 47	2.7	6
72	Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex([])). <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 1231-46	4.5	31
71	Molecular dynamics simulation of drug uptake by polymer. <i>Journal of Molecular Modeling</i> , 2011 , 17, 11	4 <u>1</u> -7	34
70	Synthesis, antioxidant evaluation, and quantitative structurelectivity relationship studies of chalcones. <i>Medicinal Chemistry Research</i> , 2011 , 20, 482-492	2.2	79
69	Effect of uropathogens on in vitro encrustation of polyurethane double J ureteral stents. <i>Urological Research</i> , 2011 , 39, 29-37		28
68	Mechanism of action of natural products used in the treatment of diabetes mellitus. <i>Chinese Journal of Integrative Medicine</i> , 2011 , 17, 563-74	2.9	105
67	Mechanistic investigations of lipase-catalyzed degradation of polycarbonate in organic solvents. <i>Enzyme and Microbial Technology</i> , 2011 , 48, 71-9	3.8	15
66	Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. <i>Journal of Medical Microbiology</i> , 2011 , 60, 1317-1325	3.2	33
65	Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 146-53	6	109
65 64		4.2	109
	composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 146-53 Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas		
64	composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 146-53 Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. <i>Biochemical Engineering Journal</i> , 2011 , 56, 37-45 Fouling and stability of polymers and composites in marine environment. <i>International</i>	4.2	15
64	composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 146-53 Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. <i>Biochemical Engineering Journal</i> , 2011 , 56, 37-45 Fouling and stability of polymers and composites in marine environment. <i>International Biodeterioration and Biodegradation</i> , 2011 , 65, 276-284 Biocompatibility Studies of Functionalized CoFe2O4 Magnetic Nanoparticles. <i>Current Nanoscience</i> ,	4.2	15 95
6 ₄ 6 ₃ 6 ₂	Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. <i>Biochemical Engineering Journal</i> , 2011 , 56, 37-45 Fouling and stability of polymers and composites in marine environment. <i>International Biodeterioration and Biodegradation</i> , 2011 , 65, 276-284 Biocompatibility Studies of Functionalized CoFe2O4 Magnetic Nanoparticles. <i>Current Nanoscience</i> , 2011 , 7, 371-376 Effect of Natural Products on Commercial Oral Antidiabetic Drugs in Enhancing 2-Deoxyglucose	4.2	15 95 17
64636261	Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. <i>Biochemical Engineering Journal</i> , 2011 , 56, 37-45 Fouling and stability of polymers and composites in marine environment. <i>International Biodeterioration and Biodegradation</i> , 2011 , 65, 276-284 Biocompatibility Studies of Functionalized CoFe2O4 Magnetic Nanoparticles. <i>Current Nanoscience</i> , 2011 , 7, 371-376 Effect of Natural Products on Commercial Oral Antidiabetic Drugs in Enhancing 2-Deoxyglucose Uptake by 3T3-L1 Adipocytes. <i>Therapeutic Advances in Endocrinology and Metabolism</i> , 2011 , 2, 103-14 Quantitative structureBytotoxicity relationships (QSCR) for semi-synthetic Taxoteres against	4.2 4.8 1.4	15 95 17
6463626160	Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. <i>Biochemical Engineering Journal</i> , 2011 , 56, 37-45 Fouling and stability of polymers and composites in marine environment. <i>International Biodeterioration and Biodegradation</i> , 2011 , 65, 276-284 Biocompatibility Studies of Functionalized CoFe2O4 Magnetic Nanoparticles. <i>Current Nanoscience</i> , 2011 , 7, 371-376 Effect of Natural Products on Commercial Oral Antidiabetic Drugs in Enhancing 2-Deoxyglucose Uptake by 3T3-L1 Adipocytes. <i>Therapeutic Advances in Endocrinology and Metabolism</i> , 2011 , 2, 103-14 Quantitative structureBytotoxicity relationships (QSCR) for semi-synthetic Taxoteres against cancer cell lines. <i>Molecular Simulation</i> , 2011 , 37, 1122-1130 Sustainable development in agriculture, food and nutritiona patent analysis. <i>Recent Patents on</i>	4.2 4.8 1.4 4.5	15 95 17 33

56	The biocompatibility of sulfobetaine engineered poly (ethylene terephthalate) by surface entrapment technique. <i>Journal of Biomaterials Applications</i> , 2010 , 25, 119-43	2.9	11
55	Enhancement and Scale-Up of ?-(1, 3) Glucan Production by Agrobacterium sp <i>International Journal of Food Engineering</i> , 2010 , 6,	1.9	9
54	Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. <i>Botanica Marina</i> , 2010 , 53,	1.8	58
53	Polymers as ureteral stents. <i>Journal of Endourology</i> , 2010 , 24, 191-8	2.7	75
52	Biodegradation of physicochemically treated polycarbonate by fungi. <i>Biomacromolecules</i> , 2010 , 11, 20-8	3 6.9	24
51	Synergistic interaction of phenylpropanoids with antibiotics against bacteria. <i>Journal of Medical Microbiology</i> , 2010 , 59, 1469-1476	3.2	61
50	The biocompatibility of sulfobetaine engineered polymethylmethacrylate by surface entrapment technique. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 635-46	4.5	20
49	Comparison of PGH2 binding site in prostaglandin synthases. <i>BMC Bioinformatics</i> , 2010 , 11 Suppl 1, S51	3.6	3
48	In vivo modulation of foreign body response on polyurethane by surface entrapment technique. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 413-23	5.4	20
47	Understanding the structure of the adhesive plaque of Amphibalanus reticulatus. <i>Materials Science and Engineering C</i> , 2010 , 30, 112-119	8.3	25
46	Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. <i>International Biodeterioration and Biodegradation</i> , 2010 , 64, 530-536	4.8	88
45	Novel 1,3,5-triphenyl-2-pyrazolines as anti-infective agents. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 3169-72	2.9	36
44	Langmuir B lodgett films of ethylenedithiotetrathiafulvalene derivative containing hydroxyl groups. <i>Thin Solid Films</i> , 2010 , 518, 5820-5826	2.2	
43	3?-Hydroxy-4-methoxychalcone as a potential antibacterial coating on polymeric biomaterials. <i>Applied Surface Science</i> , 2010 , 256, 6018-6024	6.7	24
42	2-Methoxy-2RARdichloro chalcone as an antimicrofoulant against marine bacterial biofilm. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 81, 439-46	6	21
41	Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone. <i>Carbohydrate Polymers</i> , 2010 , 79, 717-723	10.3	81
40	Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. <i>Phytomedicine</i> , 2009 , 16, 997-1005	6.5	148
39	Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. <i>Phytomedicine</i> , 2009 , 16, 1119-26	6.5	122

(2008-2009)

38	TecoflexTM functionalization by curdlan and its effect on protein adsorption and bacterial and tissue cell adhesion. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 1115-29	4.5	17
37	Fouling and Degradation of Polycarbonate in Seawater: Field and Lab Studies. <i>Journal of Polymers and the Environment</i> , 2009 , 17, 170-180	4.5	31
36	A simple protocol for the michael addition of indoles with electron deficient olefins catalysed by TBAHS in aqueous media and their broad spectrum antibacterial activity. <i>Journal of Chemical Sciences</i> , 2009 , 121, 65-73	1.8	19
35	Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. <i>Chemical Biology and Drug Design</i> , 2009 , 73, 403-15	2.9	50
34	Antifungal activity, mechanism and QSAR studies on chalcones. <i>Chemical Biology and Drug Design</i> , 2009 , 74, 68-79	2.9	39
33	QSAR Studies on antiepileptic and locomotor in vivo activities of 4,5-diphenyl-1H-imidazoles. <i>Chemical Biology and Drug Design</i> , 2009 , 74, 173-82	2.9	7
32	Antibacterial activity, quantitative structure-activity relationship and diastereoselective synthesis of isoxazolidine derivatives via 1,3-dipolar cycloaddition of d-glucose derived nitrone with olefin. <i>Chemical Biology and Drug Design</i> , 2009 , 74, 494-506	2.9	14
31	Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. <i>International Biodeterioration and Biodegradation</i> , 2009 , 63, 106-111	4.8	113
30	Biofouling and stability of synthetic polymers in sea water. <i>International Biodeterioration and Biodegradation</i> , 2009 , 63, 884-890	4.8	169
29	Approaches to Enhance the Biodegradation of Polyolefins. <i>The Open Environmental Engineering Journal</i> , 2009 , 2, 68-80		59
28	Synergism between natural products and antibiotics against infectious diseases. <i>Phytomedicine</i> , 2008 , 15, 639-52	6.5	514
27	Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 71, 874-9	7	49
26	Biofilm formation, bacterial adhesion and host response on polymeric implantsissues and prevention. <i>Biomedical Materials (Bristol)</i> , 2008 , 3, 034003	3.5	254
25	Analysis of explanted ePTFE cardiovascular grafts (modified BT shunt). <i>Biomedical Materials</i> (<i>Bristol</i>), 2008 , 3, 034118	3.5	11
24	Experimental and QSAR studies on antimicrobial activity of benzimidazole derivatives. <i>Chemical and Pharmaceutical Bulletin</i> , 2008 , 56, 273-81	1.9	16
23	A target based therapeutic approach towards diabetes mellitus using medicinal plants. <i>Current Diabetes Reviews</i> , 2008 , 4, 291-308	2.7	92
22	Mannosylerythritol lipids: a review. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1559-	-7402	106
21	Biodegradation of aliphatic and aromatic polycarbonates. <i>Macromolecular Bioscience</i> , 2008 , 8, 14-24	5.5	211

20	Marine microbe-mediated biodegradation of low- and high-density polyethylenes. <i>International Biodeterioration and Biodegradation</i> , 2008 , 61, 203-213	4.8	212
19	Impact of topological and electronic descriptors in the QSAR of pyrazine containing thiazolines and thiazolidinones as antitubercular and antibacterial agents. <i>Chemical Biology and Drug Design</i> , 2008 , 71, 447-463	2.9	15
18	Experimental and QSAR of acetophenones as antibacterial agents. <i>Chemical Biology and Drug Design</i> , 2008 , 72, 303-13	2.9	25
17	Effect of Biofouling on Stability of Polycarbonate in Tropical Seawater. <i>The Open Macromolecules Journal</i> , 2008 , 2, 43-53		9
16	Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles. <i>Bioorganic and Medicinal Chemistry</i> , 2007 , 15, 1083-90	3.4	87
15	Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2007 , 17, 1695-700	2.9	91
14	Marine bacteria mediated degradation of nylon 66 and 6. <i>International Biodeterioration and Biodegradation</i> , 2007 , 60, 144-151	4.8	57
13	Biofouling and biodegradation of polyolefins in ocean waters. <i>Polymer Degradation and Stability</i> , 2007 , 92, 1743-1752	4.7	105
12	Synthesis, anti-fungal activity evaluation and QSAR studies on podophyllotoxin derivatives. <i>Open Chemistry</i> , 2007 , 5, 880-897	1.6	10
11	Mechanistic Studies on Combination of Phytochemicals and Synthetic Drugs as Anti-Cancer Agents. <i>Annals of Traditional Chinese Medicine</i> , 2007 , 233-253		
10	MCM-41-supported platinum carbonyl cluster-derived catalysts for asymmetric and nonasymmetric hydrogenation reactions. <i>Journal of Catalysis</i> , 2006 , 239, 154-161	7.3	46
9	Polymer-surfactant layered heterostructures by electropolymerization of phenosafranine in Langmuir-Blodgett films. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 24530-40	3.4	8
8	Potential synergism of natural products in the treatment of cancer. <i>Phytotherapy Research</i> , 2006 , 20, 239-49	6.7	177
7	3-D QSAR Studies of Microtubule Stabilizing Antimitotic Agents Towards Six Cancer Cell Lines. <i>QSAR and Combinatorial Science</i> , 2006 , 25, 952-960		6
6	Experimental and modelling studies on antifungal compounds. <i>Open Chemistry</i> , 2006 , 4, 428-439	1.6	1
5	Transesterification of substituted ethanols - modelling studies. <i>Biochemical Engineering Journal</i> , 2005 , 22, 253-259	4.2	4
4	QSAR studies of paeonol analogues for inhibition of platelet aggregation. <i>Bioorganic and Medicinal Chemistry</i> , 2005 , 13, 5996-6001	3.4	17
3	Computer-Aided Molecular Modeling: A Predictive Approach in the Design of Nanoparticulate Drug Delivery System. <i>Journal of Biomedical Nanotechnology</i> , 2005 , 1, 375-383	4	4

LIST OF PUBLICATIONS

- Biological Synthesis of Silver Nanoparticles and their Functional Properties 162-179
- Biological Synthesis of Silver Nanoparticles and their Functional Properties1090-1107