
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4470751/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF         | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 1  | Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology, 2011, 69, 292-302.                                                                 | 2.8        | 8,001         |
| 2  | Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology, 2001, 50, 121-127.              | 2.8        | 6,122         |
| 3  | Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology, The, 2018, 17, 162-173.                                                                          | 4.9        | 4,605         |
| 4  | Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria― Annals of<br>Neurology, 2005, 58, 840-846.                                                             | 2.8        | 4,495         |
| 5  | Defining the clinical course of multiple sclerosis. Neurology, 2014, 83, 278-286.                                                                                                            | 1.5        | 2,344         |
| 6  | Multiple sclerosis. Lancet, The, 2018, 391, 1622-1636.                                                                                                                                       | 6.3        | 1,204         |
| 7  | Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 2014,<br>83, 1022-1024.                                                                      | 1.5        | 953           |
| 8  | The Multiple Sclerosis Impact Scale (MSIS-29): A new patient-based outcome measure. Brain, 2001, 124,<br>962-973.                                                                            | 3.7        | 865           |
| 9  | A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis. New England<br>Journal of Medicine, 2002, 346, 158-164.                                                 | 13.9       | 806           |
| 10 | Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis.<br>Brain, 2008, 131, 808-817.                                                       | 3.7        | 783           |
| 11 | Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS) Tj ETQq1 1 0                                                                                | .784314 rg | gBT_/Qverlock |
| 12 | Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis:<br>an open-label phase 2a proof-of-concept study. Lancet Neurology, The, 2012, 11, 150-156. | 4.9        | 548           |
| 13 | Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain, 2002, 125, 1676-1695.                                                | 3.7        | 534           |
| 14 | Functional–Anatomical Validation and Individual Variation of Diffusion Tractography-based<br>Segmentation of the Human Thalamus. Cerebral Cortex, 2005, 15, 31-39.                           | 1.6        | 514           |
| 15 | Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis,<br>diagnosis, and prognosis. Lancet Neurology, The, 2005, 4, 281-288.                 | 4.9        | 513           |
| 16 | Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Annals of Neurology, 1991, 29, 53-62.                                                             | 2.8        | 488           |
| 17 | Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Annals of Neurology, 2005, 58, 383-391.                                                                      | 2.8        | 477           |
| 18 | New insights into the burden and costs of multiple sclerosis in Europe. Multiple Sclerosis Journal, 2017–23, 1123-1136                                                                       | 1.4        | 472           |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 96-120.                                              | 1.4 | 458       |
| 20 | Gray matter atrophy is related to longâ€ŧerm disability in multiple sclerosis. Annals of Neurology, 2008,<br>64, 247-254.                                                            | 2.8 | 425       |
| 21 | Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurology, The, 2007, 6, 1094-1105.                             | 4.9 | 412       |
| 22 | Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain, 2006, 129, 809-819.                                                               | 3.7 | 369       |
| 23 | Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurology, The, 2008, 7, 715-727.                                    | 4.9 | 360       |
| 24 | Recommendations from the national multiple sclerosis society clinical outcomes assessment task force. Annals of Neurology, 1997, 42, 379-382.                                        | 2.8 | 342       |
| 25 | Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain, 2004, 127, 1101-1107.   | 3.7 | 335       |
| 26 | Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 2003, 126, 2191-2202.                                                                                 | 3.7 | 330       |
| 27 | Exercise in patients with multiple sclerosis. Lancet Neurology, The, 2017, 16, 848-856.                                                                                              | 4.9 | 316       |
| 28 | MRI in multiple sclerosis: current status and future prospects. Lancet Neurology, The, 2008, 7, 615-625.                                                                             | 4.9 | 295       |
| 29 | Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.                                                              | 2.8 | 295       |
| 30 | MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurology, The, 2007, 6, 677-686.           | 4.9 | 292       |
| 31 | Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.                                                                                      | 3.7 | 269       |
| 32 | Kurtzke scales revisited: the application of psychometric methods to clinical intuition. Brain, 2000, 123, 1027-1040.                                                                | 3.7 | 265       |
| 33 | The Evolution of Prefrontal Inputs to the Cortico-pontine System: Diffusion Imaging Evidence from<br>Macaque Monkeys and Humans. Cerebral Cortex, 2006, 16, 811-818.                 | 1.6 | 258       |
| 34 | Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Annals of Neurology, 2002, 52, 47-53.                      | 2.8 | 251       |
| 35 | MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurology, The, 2013, 12, 873-881. | 4.9 | 239       |
| 36 | Disability, atrophy and cortical reorganization following spinal cord injury. Brain, 2011, 134, 1610-1622.                                                                           | 3.7 | 238       |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function.<br>Lancet, The, 2017, 389, 1357-1366.                                                             | 6.3 | 235       |
| 38 | From diffusion tractography to quantitative white matter tract measures: a reproducibility study.<br>NeuroImage, 2003, 18, 348-359.                                                                   | 2.1 | 219       |
| 39 | Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. Journal of Neurology, 2003, 250, 1407-1419.                                   | 1.8 | 216       |
| 40 | Spinal-cord MRI in multiple sclerosis. Lancet Neurology, The, 2003, 2, 555-562.                                                                                                                       | 4.9 | 213       |
| 41 | Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis.<br>Brain, 2004, 127, 1361-1369.                                                                 | 3.7 | 193       |
| 42 | Functional anatomy of interhemispheric cortical connections in the human brain. Journal of Anatomy, 2006, 209, 311-320.                                                                               | 0.9 | 192       |
| 43 | Treatment of cognitive impairment in multiple sclerosis: position paper. Journal of Neurology, 2013, 260, 1452-1468.                                                                                  | 1.8 | 189       |
| 44 | Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain, 2006, 129, 1859-1871.                                       | 3.7 | 177       |
| 45 | Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: Evidence that axonal loss is a substrate of MRI-detected atrophy. NeuroImage, 2006, 31, 286-293.                 | 2.1 | 176       |
| 46 | Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: An in vivo study with TBSS and VBM. Human Brain Mapping, 2009, 30, 2852-2861. | 1.9 | 170       |
| 47 | Quality of Life Measurement After Stroke. Stroke, 2002, 33, 1348-1356.                                                                                                                                | 1.0 | 166       |
| 48 | A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging. Journal of Neurology, 2003, 250, 287-292.                                     | 1.8 | 161       |
| 49 | Regional Gray Matter Atrophy in Early Primary Progressive Multiple Sclerosis. Archives of Neurology, 2006, 63, 1175.                                                                                  | 4.9 | 157       |
| 50 | Clinical outcomes assessment in multiple sclerosis. Annals of Neurology, 1996, 40, 469-479.                                                                                                           | 2.8 | 155       |
| 51 | Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain, 2007, 130, 2220-2231.                                                              | 3.7 | 154       |
| 52 | Optic nerve diffusion tensor imaging in optic neuritis. Neurolmage, 2006, 30, 498-505.                                                                                                                | 2.1 | 151       |
| 53 | Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging. NeuroImage, 2004, 21, 1452-1463.                                         | 2.1 | 149       |
| 54 | Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. Lancet Neurology, The, 2010, 9, 1182-1199.                                                    | 4.9 | 146       |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | What sample sizes for reliability and validity studies in neurology?. Journal of Neurology, 2012, 259, 2681-2694.                                                                                                                                           | 1.8 | 140       |
| 56 | Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.                                                                                                                                                                      | 3.7 | 139       |
| 57 | Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter<br>in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging<br>study. Journal of Neurology, 2001, 248, 131-138. | 1.8 | 136       |
| 58 | The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. Journal of Magnetic Resonance Imaging, 2002, 15, 259-267.                                                                       | 1.9 | 136       |
| 59 | The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. European Journal of Neuroscience, 2007, 25, 1865-1873.                                                                 | 1.2 | 136       |
| 60 | Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain, 2005, 128, 1454-1460.                                                                                                                    | 3.7 | 135       |
| 61 | Identifying brain regions for integrative sensorimotor processing with ankle movements.<br>Experimental Brain Research, 2005, 166, 31-42.                                                                                                                   | 0.7 | 132       |
| 62 | Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management. Lancet Neurology, The, 2005, 4, 341-348.                                                                                  | 4.9 | 129       |
| 63 | Neuroplasticity and functional recovery in multiple sclerosis. Nature Reviews Neurology, 2012, 8, 635-646.                                                                                                                                                  | 4.9 | 128       |
| 64 | Progressive grey matter atrophy in clinically early relapsing-remitting multiple sclerosis. Multiple<br>Sclerosis Journal, 2004, 10, 387-391.                                                                                                               | 1.4 | 125       |
| 65 | A serial MRI study following optic nerve mean area in acute optic neuritis. Brain, 2004, 127, 2498-2505.                                                                                                                                                    | 3.7 | 125       |
| 66 | MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet<br>Neurology, The, 2019, 18, 1123-1135.                                                                                                                    | 4.9 | 125       |
| 67 | Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature<br>Reviews Neurology, 2019, 15, 718-731.                                                                                                                     | 4.9 | 125       |
| 68 | Investigation of white matter pathology in ALS and PLS using tractâ€based spatial statistics. Human<br>Brain Mapping, 2009, 30, 615-624.                                                                                                                    | 1.9 | 123       |
| 69 | The influence of time after stroke on brain activations during a motor task. Annals of Neurology, 2004, 55, 829-834.                                                                                                                                        | 2.8 | 118       |
| 70 | Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper. Multiple Sclerosis Journal, 2016, 22, 1386-1396.                                                                                                     | 1.4 | 118       |
| 71 | Diffusion tractography based group mapping of major white-matter pathways in the human brain.<br>Neurolmage, 2003, 19, 1545-1555.                                                                                                                           | 2.1 | 116       |
| 72 | Setting a research agenda for progressive multiple sclerosis: The International Collaborative on<br>Progressive MS. Multiple Sclerosis Journal, 2012, 18, 1534-1540.                                                                                        | 1.4 | 116       |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain, 2003, 126, 2528-2536.                                                                                                                                  | 3.7 | 115       |
| 74 | Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nature Reviews Neurology, 2018, 14, 75-93.                                                                                                     | 4.9 | 115       |
| 75 | Optic radiation changes after optic neuritis detected by tractography-based group mapping. Human<br>Brain Mapping, 2005, 25, 308-316.                                                                                                 | 1.9 | 114       |
| 76 | Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nature Communications, 2021, 12, 2078.                                                                                                      | 5.8 | 112       |
| 77 | The normal appearing grey matter in primary progressive multiple sclerosis. Journal of Neurology, 2003, 250, 67-74.                                                                                                                   | 1.8 | 111       |
| 78 | Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet<br>Neurology, The, 2019, 18, 185-197.                                                                                               | 4.9 | 110       |
| 79 | Serial magnetization transfer imaging in acute optic neuritis. Brain, 2003, 127, 692-700.                                                                                                                                             | 3.7 | 107       |
| 80 | The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort<br>characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials, 2011,<br>12, 62.                   | 0.7 | 104       |
| 81 | Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Experimental Neurology, 2004, 190, 425-432.                                                                                  | 2.0 | 103       |
| 82 | Localization of grey matter atrophy in early RRMS. Journal of Neurology, 2006, 253, 1495-1501.                                                                                                                                        | 1.8 | 102       |
| 83 | Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone<br>benefits from the latest advances in multiple sclerosis?. Journal of Neurology, Neurosurgery and<br>Psychiatry, 2018, 89, 844-850. | 0.9 | 102       |
| 84 | Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis.<br>Brain, 2005, 128, 2911-2925.                                                                                                  | 3.7 | 101       |
| 85 | Predicting progression in primary progressive multiple sclerosis: A 10â€year multicenter study. Annals of Neurology, 2008, 63, 790-793.                                                                                               | 2.8 | 101       |
| 86 | Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Annals of Neurology, 2005, 57, 622-633.                                                                                                               | 2.8 | 100       |
| 87 | Correlates of Executive Function in Multiple Sclerosis:. Journal of Neuropsychiatry and Clinical Neurosciences, 1999, 11, 45-50.                                                                                                      | 0.9 | 99        |
| 88 | A longitudinal study of cognition in primary progressive multiple sclerosis. Brain, 2005, 128, 2891-2898.                                                                                                                             | 3.7 | 99        |
| 89 | Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability.<br>NeuroImage, 2007, 37, 253-261.                                                                                             | 2.1 | 99        |
| 90 | Factors influencing work retention for people with multiple sclerosis. Journal of Neurology, 2005, 252, 892-896.                                                                                                                      | 1.8 | 98        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Progressive neurodegeneration following spinal cord injury. Neurology, 2018, 90, e1257-e1266.                                                                                                   | 1.5 | 97        |
| 92  | Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain, 2015, 138, 2584-2595.                                            | 3.7 | 95        |
| 93  | Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. Journal of Neurology, 2009, 256, 305-319.                                  | 1.8 | 94        |
| 94  | Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients.<br>Journal of Neurology, 2003, 250, 861-866.                                               | 1.8 | 91        |
| 95  | Visual recovery following acute optic neuritis. Journal of Neurology, 2004, 251, 996-1005.                                                                                                      | 1.8 | 91        |
| 96  | Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain, 2006, 129, 1031-1039.                                                                     | 3.7 | 88        |
| 97  | New T2 lesions enable an earlier diagnosis of multiple sclerosis in clinically isolated syndromes.<br>Annals of Neurology, 2003, 53, 673-676.                                                   | 2.8 | 85        |
| 98  | Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram<br>abnormalities. Multiple Sclerosis Journal, 2003, 9, 566-573.                                      | 1.4 | 82        |
| 99  | Grey and white matter atrophy in early clinical stages of primary progressive multiple sclerosis.<br>NeuroImage, 2004, 22, 353-359.                                                             | 2.1 | 80        |
| 100 | MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain. Journal of<br>Neurology, 2008, 255, 1-10.                                                           | 1.8 | 80        |
| 101 | Impact on Clinical and Cost Outcomes of a Centralized Approach to Acute Stroke Care in London: A<br>Comparative Effectiveness Before and After Model. PLoS ONE, 2013, 8, e70420.                | 1.1 | 79        |
| 102 | Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 833-839.                                 | 0.9 | 77        |
| 103 | Tracking sensory system atrophy and outcome prediction in spinal cord injury. Annals of Neurology, 2015, 78, 751-761.                                                                           | 2.8 | 77        |
| 104 | MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction. Multiple Sclerosis Journal, 2009, 15, 811-817.           | 1.4 | 76        |
| 105 | Tracking Changes following Spinal Cord Injury. Neuroscientist, 2013, 19, 116-128.                                                                                                               | 2.6 | 76        |
| 106 | Relating functional changes during hand movement to clinical parameters in patients with multiple<br>sclerosis in a multiâ€centre fMRI study. European Journal of Neurology, 2008, 15, 113-122. | 1.7 | 75        |
| 107 | Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Annals of<br>Neurology, 2010, 67, 99-113.                                                                      | 2.8 | 75        |
| 108 | Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal,<br>2001, 7, 290-297.                                                                      | 1.4 | 73        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The 2013 clinical course descriptors for multiple sclerosis. Neurology, 2020, 94, 1088-1092.                                                                                                  | 1.5 | 73        |
| 110 | Increasing normal–appearing grey and white matter magnetisation transfer ratio abnormality in early relapsing–remitting multiple sclerosis. Journal of Neurology, 2005, 252, 1037-1044.       | 1.8 | 72        |
| 111 | Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. European Journal of Neuroscience, 2011, 34, 1839-1846.                                   | 1.2 | 72        |
| 112 | A 1H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials<br>in multiple sclerosis. Magnetic Resonance Imaging, 2000, 18, 455-459.                | 1.0 | 71        |
| 113 | Normal-Appearing Brain T1 Relaxation Time Predicts Disability in Early Primary Progressive Multiple<br>Sclerosis. Archives of Neurology, 2007, 64, 411.                                       | 4.9 | 71        |
| 114 | Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis treatment trials. Journal of Neurology, 1997, 244, 76-84.                                 | 1.8 | 70        |
| 115 | Imaging of the spinal cord and brain in multiple sclerosis: a comparative study between fast flair and<br>fast spin echo. Journal of Neurology, 1997, 244, 119-124.                           | 1.8 | 68        |
| 116 | Metabolite changes in early relapsing–remitting multiple sclerosis. Journal of Neurology, 2006, 253,<br>224-230.                                                                              | 1.8 | 68        |
| 117 | Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. Brain, 2016,<br>139, 816-828.                                                                         | 3.7 | 67        |
| 118 | A 30‥ear Clinical and Magnetic Resonance Imaging Observational Study of Multiple Sclerosis and<br>Clinically Isolated Syndromes. Annals of Neurology, 2020, 87, 63-74.                        | 2.8 | 67        |
| 119 | Guidelines for using quantitative magnetization transfer magnetic resonance imaging for monitoring treatment of multiple sclerosis. Journal of Magnetic Resonance Imaging, 2003, 17, 389-397. | 1.9 | 66        |
| 120 | A three-year, multi-parametric MRI study in patients at presentation with CIS. Journal of Neurology, 2008, 255, 683-691.                                                                      | 1.8 | 65        |
| 121 | Axonal integrity predicts cortical reorganisation following cervical injury. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2012, 83, 629-637.                                         | 0.9 | 65        |
| 122 | The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. Journal of Neurology, 2002, 249, 193-199.                    | 1.8 | 64        |
| 123 | Recommendations for observational studies of comorbidity in multiple sclerosis. Neurology, 2016, 86, 1446-1453.                                                                               | 1.5 | 64        |
| 124 | Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Multiple<br>Sclerosis Journal, 2010, 16, 1193-1202.                                              | 1.4 | 63        |
| 125 | Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest.<br>Neurology, 2016, 87, 2463-2470.                                                           | 1.5 | 63        |
| 126 | Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis Journal, 2002, 8, 207-210.                     | 1.4 | 62        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Early MRI in optic neuritis: the risk for clinically definite multiple sclerosis. Multiple Sclerosis<br>Journal, 2010, 16, 156-165.                                                                                       | 1.4 | 62        |
| 128 | A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Multiple Sclerosis Journal, 2011, 17, 1079-1087.                                              | 1.4 | 62        |
| 129 | Degeneration of the Injured Cervical Cord Is Associated with Remote Changes in Corticospinal Tract<br>Integrity and Upper Limb Impairment. PLoS ONE, 2012, 7, e51729.                                                     | 1.1 | 62        |
| 130 | Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage: Clinical, 2015, 7, 281-287.                                                                                                        | 1.4 | 61        |
| 131 | Longitudinal Changes in Cerebral Response to Proprioceptive Input in Individual Patients after Stroke:<br>An fMRI Study. Neurorehabilitation and Neural Repair, 2006, 20, 398-405.                                        | 1.4 | 60        |
| 132 | Magnetization Transfer Ratio in Gray Matter. Archives of Neurology, 2008, 65, 1454.                                                                                                                                       | 4.9 | 59        |
| 133 | Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. Journal of Neurology, 2006, 253, 882-891.                                   | 1.8 | 58        |
| 134 | Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 455-464.                                                       | 1.4 | 58        |
| 135 | Two-dimensional population map of cortical connections in the human internal capsule. Journal of<br>Magnetic Resonance Imaging, 2007, 25, 48-54.                                                                          | 1.9 | 56        |
| 136 | Does neurorehabilitation have a role in relapsing-remitting multiple sclerosis?. Journal of Neurology, 2003, 250, 1214-1218.                                                                                              | 1.8 | 53        |
| 137 | Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 2008, 187, 25-31.           | 0.7 | 52        |
| 138 | Hippocampal atrophy in relapsing-remitting and primary progressive MS: a comparative study. Multiple<br>Sclerosis Journal, 2010, 16, 1083-1090.                                                                           | 1.4 | 52        |
| 139 | Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy.<br>Scientific Reports, 2016, 6, 24636.                                                                                     | 1.6 | 52        |
| 140 | Abnormal connectivity of the sensorimotor network in patients with MS: A multicenter fMRI study.<br>Human Brain Mapping, 2009, 30, 2412-2425.                                                                             | 1.9 | 51        |
| 141 | Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain, 2015, 138, 1568-1582.                                                                           | 3.7 | 51        |
| 142 | Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: Relationship<br>to clinical parameters. Journal of Magnetic Resonance Imaging, 1996, 6, 580-584.                                  | 1.9 | 50        |
| 143 | Overview of primary progressive multiple sclerosis (PPMS): similarities and differences from other forms of MS, diagnostic criteria, pros and cons of progressive diagnosis. Multiple Sclerosis Journal, 2004, 10, S2-S7. | 1.4 | 50        |
| 144 | Reproducibility of fMRI in the clinical setting: Implications for trial designs. NeuroImage, 2008, 42, 603-610.                                                                                                           | 2.1 | 49        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Symptomatic treatment and management of multiple sclerosis. Handbook of Clinical Neurology /<br>Edited By P J Vinken and G W Bruyn, 2014, 122, 513-562.                                                   | 1.0 | 49        |
| 146 | Neutralizing anti-interferon beta antibodies are associated with reduced side effects and delayed impact on efficacy of Interferon-beta. Multiple Sclerosis Journal, 2008, 14, 212-218.                   | 1.4 | 48        |
| 147 | The challenge of comorbidity in clinical trials for multiple sclerosis. Neurology, 2016, 86, 1437-1445.                                                                                                   | 1.5 | 48        |
| 148 | Reduced neurite density in the brain and cervical spinal cord in relapsing–remitting multiple<br>sclerosis: A NODDI study. Multiple Sclerosis Journal, 2020, 26, 1647-1657.                               | 1.4 | 48        |
| 149 | Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Multiple Sclerosis Journal, 2007, 13, 875-879.                                                | 1.4 | 47        |
| 150 | Assessing Neuronal Metabolism In Vivo by Modeling Imaging Measures. Journal of Neuroscience, 2010,<br>30, 15030-15033.                                                                                    | 1.7 | 47        |
| 151 | Muscle paresis and passive stiffness: Key determinants in limiting function in Hereditary and Sporadic Spastic Paraparesis. Gait and Posture, 2012, 35, 266-271.                                          | 0.6 | 46        |
| 152 | Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical, 2018, 20, 556-563.                                      | 1.4 | 46        |
| 153 | Estimation of the macromolecular proton fraction and bound pool T2 in multiple sclerosis. Multiple<br>Sclerosis Journal, 2004, 10, 607-613.                                                               | 1.4 | 45        |
| 154 | Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis<br>using automated segmentation and brain volume correction. Multiple Sclerosis Journal, 2004, 10, 9-15. | 1.4 | 45        |
| 155 | Corpus callosum damage predicts disability progression and cognitive dysfunction in<br>primaryâ€progressive MS after five years. Human Brain Mapping, 2013, 34, 1163-1172.                                | 1.9 | 45        |
| 156 | Upper cervical cord area in early relapsing-remitting multiple sclerosis: Cross-sectional study of factors influencing cord size. Journal of Magnetic Resonance Imaging, 2006, 23, 473-476.               | 1.9 | 44        |
| 157 | Voxel-based analysis of grey matter magnetization transfer ratio maps in early relapsing remitting multiple sclerosis. Multiple Sclerosis Journal, 2007, 13, 483-489.                                     | 1.4 | 44        |
| 158 | Low Myoâ€inositol indicating astrocytic damage in a case series of neuromyelitis optica. Annals of<br>Neurology, 2013, 74, 301-305.                                                                       | 2.8 | 44        |
| 159 | Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis.<br>NeuroImage, 2014, 86, 257-264.                                                                        | 2.1 | 44        |
| 160 | Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury.<br>Neurology, 2018, 90, e1510-e1522.                                                                        | 1.5 | 44        |
| 161 | Two-year follow-up study of primary and transitional progressive multiple sclerosis. Multiple<br>Sclerosis Journal, 2002, 8, 108-114.                                                                     | 1.4 | 43        |
| 162 | Effect sizes can be misleading: is it time to change the way we measure change?. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2010, 81, 1044-1048.                                               | 0.9 | 43        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Primary Progressive Multiple Sclerosis. CNS Drugs, 2005, 19, 369-376.                                                                                                                                                          | 2.7 | 41        |
| 164 | Home versus outpatient administration of intravenous steroids for multiple-sclerosis relapses: a randomised controlled trial. Lancet Neurology, The, 2006, 5, 565-571.                                                         | 4.9 | 41        |
| 165 | Normal-appearing grey and white matter T1 abnormality in early relapsing–remitting multiple<br>sclerosis: a longitudinal study. Multiple Sclerosis Journal, 2007, 13, 169-177.                                                 | 1.4 | 41        |
| 166 | Developing the ICF Core Sets for multiple sclerosis to specify functioning. Multiple Sclerosis Journal, 2008, 14, 252-254.                                                                                                     | 1.4 | 41        |
| 167 | Magnetization transfer ratio abnormalities reflect clinically relevant grey matter damage in multiple<br>sclerosis. Multiple Sclerosis Journal, 2009, 15, 668-677.                                                             | 1.4 | 41        |
| 168 | European validation of a standardized clinical description of multiple sclerosis. Journal of Neurology, 2004, 251, 1472-1480.                                                                                                  | 1.8 | 40        |
| 169 | Embodied neurology: an integrative framework for neurological disorders. Brain, 2016, 139, 1855-1861.                                                                                                                          | 3.7 | 39        |
| 170 | Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Multiple Sclerosis Journal, 2020, 26, 1031-1044.                                                                                                     | 1.4 | 39        |
| 171 | Patient-based outcomes of cervical dystonia: A review of rating scales. Movement Disorders, 2004, 19, 1054-1059.                                                                                                               | 2.2 | 38        |
| 172 | DIR-visible grey matter lesions and atrophy in multiple sclerosis: partners in crime?. Journal of<br>Neurology, Neurosurgery and Psychiatry, 2016, 87, 461-467.                                                                | 0.9 | 38        |
| 173 | Patterns of disease activity in multiple sclerosis patients: A study with quantitative<br>gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. Journal of<br>Neurology, 1996, 243, 536-542. | 1.8 | 37        |
| 174 | Exploring rating scale responsiveness. Neurology, 2004, 62, 1842-1844.                                                                                                                                                         | 1.5 | 37        |
| 175 | Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis.<br>Multiple Sclerosis Journal, 2018, 24, 932-941.                                                                       | 1.4 | 37        |
| 176 | Structural network disruption markers explain disability in multiple sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2019, 90, 219-226.                                                                       | 0.9 | 37        |
| 177 | T1 histograms of normal-appearing brain tissue are abnormal in early relapsing-remitting multiple<br>sclerosis. Multiple Sclerosis Journal, 2002, 8, 211-216.                                                                  | 1.4 | 36        |
| 178 | Disability and lesion load in MS: a reassessment with MS functional composite score and 3D fast FLAIR.<br>Journal of Neurology, 2002, 249, 18-24.                                                                              | 1.8 | 36        |
| 179 | Emergence of thalamic magnetization transfer ratio abnormality in early relapsing—remitting<br>multiple sclerosis. Multiple Sclerosis Journal, 2005, 11, 276-281.                                                              | 1.4 | 35        |
| 180 | Plasma cerebrosterol and magnetic resonance imaging measures in multiple sclerosis. Clinical<br>Neurology and Neurosurgery, 2006, 108, 456-460.                                                                                | 0.6 | 35        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Multiple Sclerosis Journal, 2009, 15, 1459-1465.                                                                                                        | 1.4 | 35        |
| 182 | Changes in Auditory Feedback Connections Determine the Severity of Speech Processing Deficits after Stroke. Journal of Neuroscience, 2012, 32, 4260-4270.                                                                          | 1.7 | 35        |
| 183 | Progressive MS: from pathophysiology to drug discovery. Multiple Sclerosis Journal, 2015, 21, 1376-1384.                                                                                                                           | 1.4 | 35        |
| 184 | Applying the 2017 McDonald diagnostic criteria for multiple sclerosis – Authors' reply. Lancet<br>Neurology, The, 2018, 17, 499-500.                                                                                               | 4.9 | 35        |
| 185 | Dissecting structure–function interactions in acute optic neuritis to investigate neuroplasticity.<br>Human Brain Mapping, 2010, 31, 276-286.                                                                                      | 1.9 | 34        |
| 186 | White and gray matter damage in primary progressive MS. Neurology, 2016, 86, 170-176.                                                                                                                                              | 1.5 | 34        |
| 187 | Method for simultaneous voxelâ€based morphometry of the brain and cervical spinal cord area<br>measurements using 3Dâ€MDEFT. Journal of Magnetic Resonance Imaging, 2010, 32, 1242-1247.                                           | 1.9 | 33        |
| 188 | Combining tractography and cortical measures to test system-specific hypotheses in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 555-565.                                                                              | 1.4 | 33        |
| 189 | Brain lesion location and clinical status 20 years after a diagnosis of clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 322-328.                                              | 1.4 | 33        |
| 190 | Preliminary magnetic resonance study of the macromolecular proton fraction in white matter: a potential marker of myelin?. Multiple Sclerosis Journal, 2003, 9, 246-249.                                                           | 1.4 | 32        |
| 191 | Specificity of Barkhof Criteria in Predicting Conversion to Multiple Sclerosis When Applied to Clinically Isolated Brainstem Syndromes. Archives of Neurology, 2004, 61, 222.                                                      | 4.9 | 32        |
| 192 | Achieving valid patient-reported outcomes measurement: a lesson from fatigue in multiple sclerosis.<br>Multiple Sclerosis Journal, 2013, 19, 1773-1783.                                                                            | 1.4 | 32        |
| 193 | Control of spasticity in a multiple sclerosis model using central nervous systemâ€excluded CB<br><sub>1</sub> cannabinoid receptor agonists. FASEB Journal, 2014, 28, 117-130.                                                     | 0.2 | 32        |
| 194 | Monitoring disease activity and progression in primary progressive multiple sclerosis using MRI:<br>sub-voxel registration to identify lesion changes and to detect cerebral atrophy. Journal of<br>Neurology, 2002, 249, 171-177. | 1.8 | 31        |
| 195 | Lesion enhancement diminishes with time in primary progressive multiple sclerosis. Multiple Sclerosis<br>Journal, 2010, 16, 317-324.                                                                                               | 1.4 | 31        |
| 196 | Introduction of integrated care pathways for patients with multiple sclerosis in an inpatient neurorehabilitation setting. Disability and Rehabilitation, 1995, 17, 443-448.                                                       | 0.9 | 30        |
| 197 | Neurorehabilitation in multiple sclerosis: foundations, facts and fiction. Current Opinion in Neurology, 2005, 18, 267-271.                                                                                                        | 1.8 | 30        |
| 198 | A much-needed focus on progression in multiple sclerosis. Lancet Neurology, The, 2015, 14, 133-135.                                                                                                                                | 4.9 | 30        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | White matter tract abnormalities are associated with cognitive dysfunction in secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1429-1437.                                                   | 1.4 | 30        |
| 200 | TI-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Multiple Sclerosis<br>Journal, 2010, 16, 427-433.                                                                                    | 1.4 | 28        |
| 201 | Applying causal models to explore the mechanism of action of simvastatin in progressive multiple<br>sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>11020-11027. | 3.3 | 28        |
| 202 | Improved performance of the 2017 McDonald criteria for diagnosis of multiple sclerosis in children in<br>a real-life cohort. Multiple Sclerosis Journal, 2020, 26, 1372-1380.                                              | 1.4 | 28        |
| 203 | Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology, 2020, 95, e2965-e2976.                                                                                                         | 1.5 | 28        |
| 204 | Longitudinal evaluation of clinically early relapsing-remitting multiple sclerosis with diffusion tensor imaging. Journal of Neurology, 2008, 255, 390-397.                                                                | 1.8 | 27        |
| 205 | Magnetic resonance imaging predictors of disability in primary progressive multiple sclerosis: a 5-year study. Multiple Sclerosis Journal, 2004, 10, 398-401.                                                              | 1.4 | 25        |
| 206 | Quantification of optic nerve head topography in optic neuritis: a pilot study. British Journal of<br>Ophthalmology, 2006, 90, 1128-1131.                                                                                  | 2.1 | 25        |
| 207 | Voxel-based cervical spinal cord mapping of diffusion abnormalities in MS-related myelitis. Neurology, 2014, 83, 1321-1325.                                                                                                | 1.5 | 24        |
| 208 | New insights into the burden and costs of multiple sclerosis in Europe: Results for the United<br>Kingdom. Multiple Sclerosis Journal, 2017, 23, 204-216.                                                                  | 1.4 | 24        |
| 209 | Landscape of MS patient cohorts and registries: Recommendations for maximizing impact. Multiple<br>Sclerosis Journal, 2018, 24, 579-586.                                                                                   | 1.4 | 24        |
| 210 | Cortical involvement determines impairment 30 years after a clinically isolated syndrome. Brain, 2021, 144, 1384-1395.                                                                                                     | 3.7 | 24        |
| 211 | Application of a B-spline active surface technique to the measurement of cervical cord volume in multiple sclerosis from three-dimensional MR images. Journal of Magnetic Resonance Imaging, 2003, 18, 368-371.            | 1.9 | 23        |
| 212 | The distribution of magnetic resonance imaging response to interferonβ–1b in multiple sclerosis.<br>Journal of Neurology, 2005, 252, 1455-1458.                                                                            | 1.8 | 23        |
| 213 | Aggressive multiple sclerosis (2): Treatment. Multiple Sclerosis Journal, 2020, 26, 1045-1063.                                                                                                                             | 1.4 | 21        |
| 214 | Paradigm shifts: Early initiation of high-efficacy disease-modifying treatment in multiple sclerosis.<br>Multiple Sclerosis Journal, 2021, 27, 1473-1476.                                                                  | 1.4 | 21        |
| 215 | Urinary neopterin and nitric oxide metabolites as markers of interferon β-1a activity in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1066-1072.                                          | 1.4 | 20        |
| 216 | Challenge of progressive multiple sclerosis therapy. Current Opinion in Neurology, 2017, 30, 237-240.                                                                                                                      | 1.8 | 20        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Longitudinal changes of spinal cord grey and white matter following spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1222-1230.                                      | 0.9 | 20        |
| 218 | The predictive value of gadolinium enhancement for long term disability in relapsing–remitting<br>multiple sclerosis – preliminary results. Multiple Sclerosis Journal, 2001, 7, 23-25.              | 1.4 | 20        |
| 219 | The Cervical Dystonia Impact Profile (CDIP-58): Can a Rasch developed patient reported outcome measure satisfy traditional psychometric criteria?. Health and Quality of Life Outcomes, 2008, 6, 58. | 1.0 | 19        |
| 220 | Evidence-based guidelines for using the Short Form 36 in cervical dystonia. Movement Disorders, 2007, 22, 122-127.                                                                                   | 2.2 | 18        |
| 221 | Metabolic Changes in the Spinal Cord After Brachial Plexus Root Re-implantation. Neurorehabilitation and Neural Repair, 2013, 27, 118-124.                                                           | 1.4 | 18        |
| 222 | HLA-DRB1*15 influences the development of brain tissue damage in early PPMS. Neurology, 2014, 83, 1712-1718.                                                                                         | 1.5 | 18        |
| 223 | Atlas of MS 2020: Informing global policy change. Multiple Sclerosis Journal, 2020, 26, 1807-1808.                                                                                                   | 1.4 | 18        |
| 224 | Linking white matter tracts to associated cortical grey matter: A tract extension methodology.<br>NeuroImage, 2012, 59, 3094-3102.                                                                   | 2.1 | 17        |
| 225 | Adolescent and Adult Children of Parents with Parkinson's Disease: Incorporating Their Needs in<br>Clinical Guidelines. Parkinson's Disease, 2011, 2011, 1-6.                                        | 0.6 | 16        |
| 226 | Age Related Changes in Metabolite Concentrations in the Normal Spinal Cord. PLoS ONE, 2014, 9, e105774.                                                                                              | 1.1 | 16        |
| 227 | Rehabilitation of the Cancer Patient: Experience in a Neurological Unit. Neurorehabilitation and Neural Repair, 2004, 18, 76-79.                                                                     | 1.4 | 15        |
| 228 | Towards treating progressive multiple sclerosis. Nature Reviews Neurology, 2020, 16, 589-590.                                                                                                        | 4.9 | 15        |
| 229 | Rehabilitation in a neuroscience centre: the role of expert assessment and selection. International<br>Journal of Therapy and Rehabilitation, 1996, 3, 303-308.                                      | 0.1 | 14        |
| 230 | Progress in neurorehabilitation in multiple sclerosis. Current Opinion in Neurology, 2002, 15, 267-270.                                                                                              | 1.8 | 14        |
| 231 | Serum gelatinase B/MMP-9 in primary progressive multiple sclerosis patients treated with interferon-beta-1a. Journal of Neurology, 2003, 250, 1037-1043.                                             | 1.8 | 14        |
| 232 | Clinical relevance of cortical network dynamics in early primary progressive MS. Multiple Sclerosis<br>Journal, 2020, 26, 442-456.                                                                   | 1.4 | 14        |
| 233 | Refinement and validation of the Parental Illness Impact Scale. Parkinsonism and Related Disorders, 2010, 16, 181-185.                                                                               | 1.1 | 12        |
| 234 | A novel approach with "skeletonised MTR†measures tractâ€specific microstructural changes in early<br>primaryâ€progressive MS. Human Brain Mapping, 2014, 35, 723-733.                                | 1.9 | 12        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Relationship of triple dose contrast enhanced lesions with clinical measures and brain atrophy in<br>early relapsing-remitting multiple sclerosis: a two-year longitudinal study. Multiple Sclerosis<br>Journal, 2007, 13, 178-185. | 1.4 | 11        |
| 236 | The patient's experience of being a human subject. Journal of the Royal Society of Medicine, 2008, 101, 416-422.                                                                                                                    | 1.1 | 11        |
| 237 | Asymmetric hemispheric representation of periictal heart rate modulation is individually lateralised.<br>Epileptic Disorders, 2011, 13, 172-176.                                                                                    | 0.7 | 11        |
| 238 | Spatial variability and changes of metabolite concentrations in the corticoâ€spinal tract in multiple sclerosis using coronal CSI. Human Brain Mapping, 2014, 35, 993-1003.                                                         | 1.9 | 11        |
| 239 | Unified understanding of MS course is required for drug development. Nature Reviews Neurology, 2018, 14, 191-192.                                                                                                                   | 4.9 | 11        |
| 240 | Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 28-38.                                                  | 1.4 | 11        |
| 241 | Improving function: a new treatment era for multiple sclerosis?. Lancet, The, 2009, 373, 697-698.                                                                                                                                   | 6.3 | 10        |
| 242 | Socio-demographic variables are limited predictors of health status in multiple sclerosis. Journal of Neurology, 2003, 250, 1088-1093.                                                                                              | 1.8 | 9         |
| 243 | Scanning Laser Polarimetry Quantification of Retinal Nerve Fiber Layer Thinning Following Optic<br>Neuritis. Journal of Neuro-Ophthalmology, 2010, 30, 235-242.                                                                     | 0.4 | 9         |
| 244 | Integrated care pathways: evaluating inpatient rehabilitation in stroke. International Journal of Therapy and Rehabilitation, 1997, 4, 97-102.                                                                                      | 0.1 | 8         |
| 245 | Developing clinical outcome measures in multiple sclerosis: an evolving process. Multiple Sclerosis<br>Journal, 2002, 8, 357-358.                                                                                                   | 1.4 | 8         |
| 246 | Is multiple sclerosis still a clinical diagnosis?. Neurology, 2003, 61, 596-597.                                                                                                                                                    | 1.5 | 8         |
| 247 | Increased urinary free immunoglobulin light chain excretion in patients with multiple sclerosis.<br>Journal of Neuroimmunology, 2010, 220, 99-103.                                                                                  | 1.1 | 8         |
| 248 | A longitudinal functional MRI study of non-arteritic anterior ischaemic optic neuropathy patients.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 905-913.                                                         | 0.9 | 8         |
| 249 | Nuclear magnetic resonance monitoring of treatment and prediction of outcome in multiple<br>sclerosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1687-1695.                                | 1.8 | 7         |
| 250 | Patient dissatisfaction: Insights into the rehabilitation process. Journal of Neurology, 2004, 251, 1094-7.                                                                                                                         | 1.8 | 7         |
| 251 | The impact of inpatient neurorehabilitation on psychological well–being on discharge and at 3 month<br>follow–up. Journal of Neurology, 2005, 252, 814-819.                                                                         | 1.8 | 7         |
| 252 | Longitudinal proxy measurements in multiple sclerosis: patient-proxy agreement on the impact of MS on daily life over a period of two years. BMC Neurology, 2008, 8, 2.                                                             | 0.8 | 7         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | The size of the treatment effect: do patients and proxies agree?. BMC Neurology, 2009, 9, 12.                                                                                               | 0.8 | 7         |
| 254 | When are we going to take modifiable risk factors more seriously in multiple sclerosis?. Multiple Sclerosis Journal, 2017, 23, 494-495.                                                     | 1.4 | 7         |
| 255 | Author response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 2018, 91, 985-985.                                                | 1.5 | 7         |
| 256 | Promises, promises…. Annals of Neurology, 2007, 61, 1-2.                                                                                                                                    | 2.8 | 6         |
| 257 | Atopic myelitis in a European woman residing in Japan. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1022-1024.                                                              | 0.9 | 6         |
| 258 | A Predictive Model for Corticosteroid Response in Individual Patients with MS Relapses. PLoS ONE, 2015, 10, e0120829.                                                                       | 1.1 | 6         |
| 259 | Editorial. Multiple Sclerosis Journal, 2017, 23, 2-3.                                                                                                                                       | 1.4 | 6         |
| 260 | Multiple Sclerosis and Demyelinating Diseases. , 0, , 411-447.                                                                                                                              |     | 5         |
| 261 | Chronic cerebrospinal venous insufficiency. Multiple Sclerosis Journal, 2010, 16, 770-770.                                                                                                  | 1.4 | 5         |
| 262 | Connecting to the future $\hat{a} \in$ " the promise of telecare. Multiple Sclerosis Journal, 2012, 18, 384-386.                                                                            | 1.4 | 5         |
| 263 | The measure tells the tale: Clinical outcome measures in multiple sclerosis. Multiple Sclerosis<br>Journal, 2017, 23, 626-627.                                                              | 1.4 | 5         |
| 264 | Advancing trial design in progressive multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1571-1572.                                                                                  | 1.4 | 5         |
| 265 | Primary progressive multiple sclerosis presenting under the age of 18 years: Fact or fiction?. Multiple Sclerosis Journal, 2021, 27, 309-314.                                               | 1.4 | 5         |
| 266 | Quantitative contrast-enhanced magnetic resonance imaging to evaluate blood-brain barrier integrity in multiple sclerosis: a preliminary study. Multiple Sclerosis Journal, 2001, 7, 75-82. | 1.4 | 5         |
| 267 | Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique. NeuroImage: Clinical, 2022, 33, 102904.         | 1.4 | 5         |
| 268 | Charting a global research strategy for progressive MS—An international progressive MS Alliance<br>proposal. Multiple Sclerosis Journal, 2022, 28, 16-28.                                   | 1.4 | 5         |
| 269 | Simultaneous assessment of regional distributions of atrophy across the neuraxis in MS patients.<br>NeuroImage: Clinical, 2022, 34, 102985.                                                 | 1.4 | 5         |
| 270 | Management of spasticity in hereditary spastic paraplegia. Physiotherapy Research International, 1999,<br>4, 68-76.                                                                         | 0.7 | 4         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | A tool to measure the attributes of receiving IV therapy in a home versus hospital setting: the Multiple<br>Sclerosis Relapse Management Scale (MSRMS). Health and Quality of Life Outcomes, 2011, 9, 80. | 1.0 | 4         |
| 272 | A little bit of toxin does you good?. Physiotherapy Research International, 1996, 1, 141-147.                                                                                                             | 0.7 | 3         |
| 273 | Evaluating the role of botulinum toxin type A in adults with focal spasticity. European Journal of Neurology, 1999, 6, s75-s75.                                                                           | 1.7 | 3         |
| 274 | Multiple Sclerosis International Federation: Stimulating international cooperation in research.<br>Neurology, 2013, 81, 1793-1795.                                                                        | 1.5 | 3         |
| 275 | Two years of COVID-19 in the MS community: What have we learnt so far?. Multiple Sclerosis Journal, 2022, 28, 1005-1008.                                                                                  | 1.4 | 3         |
| 276 | Removal of access to alemtuzumab for patients with aggressive multiple sclerosis. BMJ, The, 2013, 346, f275-f275.                                                                                         | 3.0 | 2         |
| 277 | Multiple sclerosis: the upward trajectory continues. Lancet Neurology, The, 2017, 16, 10-12.                                                                                                              | 4.9 | 2         |
| 278 | Commentary on the ECTRIMS–EAN guideline for pharmacological treatment of multiple sclerosis.<br>Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877037.                                | 1.5 | 2         |
| 279 | Disrupted principal network organisation in multiple sclerosis relates to disability. Scientific Reports, 2020, 10, 3620.                                                                                 | 1.6 | 2         |
| 280 | Chapter 1 The Diagnosis of Multiple Sclerosis. Blue Books of Practical Neurology, 2003, 27, 1-11.                                                                                                         | 0.1 | 1         |
| 281 | The physiopathology of multiple sclerosis. , 0, , 8-21.                                                                                                                                                   |     | 1         |
| 282 | MSJ 2018—editorial comment. Multiple Sclerosis Journal, 2018, 24, 90-91.                                                                                                                                  | 1.4 | 1         |
| 283 | Clinical trials to test rehabilitation. , 0, , 157-164.                                                                                                                                                   |     | 1         |
| 284 | The diagnosis and management of multiple sclerosis. , 2002, , 1620-1632.                                                                                                                                  |     | 0         |
| 285 | Chapter 22 Treatment of Progressive Multiple Sclerosis. Blue Books of Practical Neurology, 2003, 27, 341-359.                                                                                             | 0.1 | 0         |
| 286 | Chapter 20 Rehabilitation in Multiple Sclerosis. Blue Books of Practical Neurology, 2003, 27, 317-328.                                                                                                    | 0.1 | 0         |
| 287 | Value and limits of rehabilitation in multiple sclerosis. , 0, , 140-151.                                                                                                                                 |     | 0         |
| 288 | Electrophysiological assessment in multiple sclerosis. , 0, , 112-119.                                                                                                                                    |     | 0         |

| #   | Article                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Treatment for patients with primary progressive multiple sclerosis. , 0, , 604-613.                                               |     | 0         |
| 290 | SPINAL CORD GLUTAMATE-GLUTAMINE IS ELEVATED IN MS RELAPSE. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.30-e4. | 0.9 | 0         |
| 291 | Editorial 2016. Multiple Sclerosis Journal, 2016, 22, 4-4.                                                                        | 1.4 | 0         |
| 292 | Editorial 2017. Multiple Sclerosis Journal, 2017, 23, 4-4.                                                                        | 1.4 | 0         |
| 293 | 2018 Editors' commentary. Multiple Sclerosis Journal, 2018, 24, 1394-1395.                                                        | 1.4 | Ο         |
| 294 | MSJ 2019 - Editorial comment. Multiple Sclerosis Journal, 2019, 25, 4-5.                                                          | 1.4 | 0         |
| 295 | Brenda Banwell. , 2021, , 609-611.                                                                                                |     | Ο         |
| 296 | Neurorehabilitation in Multiple Sclerosis. Topics in Spinal Cord Injury Rehabilitation, 2008, 14, 63-75.                          | 0.8 | 0         |
| 297 | Magnetic resonance imaging to assess gray matter damage in multiple sclerosis. , 0, , 86-92.                                      |     | Ο         |
| 298 | Application of functional magnetic resonance imaging in multiple sclerosis. , 0, , 93-102.                                        |     | 0         |
| 299 | Functional magnetic resonance imaging in focal CNS damage. , 0, , 103-111.                                                        |     | 0         |
| 300 | Functional magnetic resonance imaging monitoring of therapeutic interventions in multiple sclerosis. , 0, , 120-126.              |     | 0         |
| 301 | Prognosis in neurorehabilitation. , 0, , 152-156.                                                                                 |     | 0         |
| 302 | Back home. , 0, , 230-239.                                                                                                        |     | 0         |