
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4470162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling and Control of a New Three-Input DC–DC Boost Converter for Hybrid PV/FC/Battery Power System. IEEE Transactions on Power Electronics, 2012, 27, 2309-2324.	5.4	300
2	A New Cascaded Switched-Capacitor Multilevel Inverter Based on Improved Series–Parallel Conversion With Less Number of Components. IEEE Transactions on Industrial Electronics, 2016, 63, 3582-3594.	5.2	210
3	Reduction of Power Electronic Elements in Multilevel Converters Using a New Cascade Structure. IEEE Transactions on Industrial Electronics, 2015, 62, 256-269.	5.2	184
4	A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications. IEEE Transactions on Industrial Electronics, 2018, 65, 1306-1315.	5.2	184
5	Double Flying Capacitor Multicell Converter Based on Modified Phase-Shifted Pulsewidth Modulation. IEEE Transactions on Power Electronics, 2010, 25, 1517-1526.	5.4	179
6	A New General Multilevel Converter Topology Based on Cascaded Connection of Submultilevel Units With Reduced Switching Components, DC Sources, and Blocked Voltage by Switches. IEEE Transactions on Industrial Electronics, 2016, 63, 7157-7164.	5.2	178
7	Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters. IET Power Electronics, 2014, 7, 157-166.	1.5	173
8	Reliability Evaluation of Conventional and Interleaved DC–DC Boost Converters. IEEE Transactions on Power Electronics, 2015, 30, 5821-5828.	5.4	160
9	A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications. IEEE Transactions on Industrial Electronics, 2017, 64, 5403-5415.	5.2	160
10	Extendable Nonisolated High Gain DC–DC Converter Based on Active–Passive Inductor Cells. IEEE Transactions on Industrial Electronics, 2018, 65, 9478-9487.	5.2	146
11	High Step-Up Quasi- <i>Z</i> Source DC–DC Converter. IEEE Transactions on Power Electronics, 2018, 33, 10563-10571.	5.4	144
12	Novel Topologies for Symmetric, Asymmetric, and Cascade Switched-Diode Multilevel Converter With Minimum Number of Power Electronic Components. IEEE Transactions on Industrial Electronics, 2014, 61, 5300-5310.	5.2	142
13	New hybrid structure for multilevel inverter with fewer number of components for highâ€voltage levels. IET Power Electronics, 2014, 7, 96-104.	1.5	131
14	Mitigation of Voltage Disturbances Using Dynamic Voltage Restorer Based on Direct Converters. IEEE Transactions on Power Delivery, 2010, 25, 2676-2683.	2.9	119
15	A New High Step-Up Multi-Input Multi-Output DC–DC Converter. IEEE Transactions on Industrial Electronics, 2019, 66, 5197-5208.	5.2	118
16	New High Step-Up Multilevel Converter Topology With Self-Voltage Balancing Ability and Its Optimization Analysis. IEEE Transactions on Industrial Electronics, 2017, 64, 7060-7070.	5.2	115
17	High Step-Up DC–DC Converter With Minimum Output Voltage Ripple. IEEE Transactions on Industrial Electronics, 2017, 64, 3568-3575.	5.2	106
18	An Interleaved High Step-Up Converter With Coupled Inductor and Built-In Transformer Voltage Multiplier Cell Techniques. IEEE Transactions on Industrial Electronics, 2019, 66, 1894-1905.	5.2	93

#	Article	IF	CITATIONS
19	Cascaded crossâ€switched multilevel inverter in symmetric and asymmetric conditions. IET Power Electronics, 2013, 6, 1041-1050.	1.5	87
20	A New Transformer-Less Five-Level Grid-Tied Inverter for Photovoltaic Applications. IEEE Transactions on Energy Conversion, 2020, 35, 106-118.	3.7	86
21	Design and Analysis of a Developed Multiport High Step-Up DC–DC Converter With Reduced Device Count and Normalized Peak Inverse Voltage on the Switches/Diodes. IEEE Transactions on Power Electronics, 2019, 34, 5464-5475.	5.4	81
22	Dynamic voltage restorer based on multilevel inverter with adjustable dcâ€link voltage. IET Power Electronics, 2014, 7, 576-590.	1.5	80
23	Modified Single-Phase Single-Stage Grid-Tied Flying Inductor Inverter With MPPT and Suppressed Leakage Current. IEEE Transactions on Industrial Electronics, 2018, 65, 221-231.	5.2	80
24	A Novel Interleaved Nonisolated Ultrahigh-Step-Up DC–DC Converter With ZVS Performance. IEEE Transactions on Industrial Electronics, 2017, 64, 3650-3661.	5.2	78
25	Design and analysis of a novel SEPICâ€based multiâ€input DC/DC converter. IET Power Electronics, 2017, 10, 1393-1402.	1.5	74
26	Flexible Power Electronic Transformer. IEEE Transactions on Power Electronics, 2010, 25, 2159-2169.	5.4	73
27	Optimization Assessment of a New Extended Multilevel Converter Topology. IEEE Transactions on Industrial Electronics, 2017, 64, 4530-4538.	5.2	71
28	A New Single-Phase Transformerless Grid-Connected Inverter With Boosting Ability and Common Ground Feature. IEEE Transactions on Industrial Electronics, 2020, 67, 9313-9325.	5.2	68
29	Three-Phase HFL-DVR With Independently Controlled Phases. IEEE Transactions on Power Electronics, 2012, 27, 1706-1718.	5.4	67
30	Cascaded multilevel inverter using sub-multilevel cells. Electric Power Systems Research, 2013, 96, 101-110.	2.1	66
31	A New Coupled Inductor Nonisolated High Step-Up Quasi Z-Source DC–DC Converter. IEEE Transactions on Industrial Electronics, 2020, 67, 5389-5397.	5.2	61
32	Performance and design analysis of an improved nonâ€isolated multiple input buck DC–DC converter. IET Power Electronics, 2017, 10, 1034-1045.	1.5	59
33	Lateral stabilization of a four wheel independent drive electric vehicle on slippery roads. Mechatronics, 2015, 30, 275-285.	2.0	57
34	Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells. Solar Energy, 2016, 132, 538-546.	2.9	56
35	Novel multilevel inverter topologies for medium and highâ€voltage applications with lower values of blocked voltage by switches. IET Power Electronics, 2014, 7, 3062-3071.	1.5	55
36	Modular nonâ€isolated multiâ€input high stepâ€up dc–dc converter with reduced normalised voltage stress and component count. IET Power Electronics, 2018, 11, 1092-1100.	1.5	55

#	Article	IF	CITATIONS
37	Compensation of voltage disturbances in distribution systems using single-phase dynamic voltage restorer. Electric Power Systems Research, 2010, 80, 1413-1420.	2.1	51
38	A highâ€voltage gain nonisolated noncoupled inductor based multiâ€input DCâ€DC topology with reduced number of components for renewable energy systems. International Journal of Circuit Theory and Applications, 2018, 46, 505-518.	1.3	51
39	New Expandable Switched-Capacitor/Switched-Inductor High-Voltage Conversion Ratio Bidirectional DC–DC Converter. IEEE Transactions on Power Electronics, 2020, 35, 2480-2487.	5.4	51
40	Extended high stepâ€up structure for multilevel converter. IET Power Electronics, 2016, 9, 1894-1902.	1.5	50
41	Transformerâ€based inverter with reduced number of switches for renewable energy applications. IET Power Electronics, 2015, 8, 1875-1884.	1.5	46
42	A New Nonisolated Single-Input Three-Output High Voltage Gain Converter With Low Voltage Stresses on Switches and Diodes. IEEE Transactions on Industrial Electronics, 2019, 66, 4308-4318.	5.2	45
43	Singleâ€phase commonâ€grounded transformerâ€less gridâ€tied inverter for PV application. IET Power Electronics, 2020, 13, 157-167.	1.5	45
44	Interleaved full ZVZCS DC–DC boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electronics, 2017, 10, 835-845.	1.5	44
45	A new DC-DC converter based on voltage-lift technique. International Transactions on Electrical Energy Systems, 2016, 26, 1260-1286.	1.2	43
46	A Novel Structure for Bridge-Type Fault Current Limiter: Capacitor-Based Nonsuperconducting FCL. IEEE Transactions on Power Electronics, 2018, 33, 3044-3051.	5.4	41
47	New Half-Bridge and Full-Bridge Topologies for a Switched-Boost Inverter With Continuous Input Current. IEEE Transactions on Industrial Electronics, 2018, 65, 3188-3197.	5.2	41
48	A new nonâ€isolated free ripple input current bidirectional <scp>DCâ€DC</scp> converter with capability of zero voltage switching. International Journal of Circuit Theory and Applications, 2018, 46, 519-542.	1.3	39
49	A DC–DC Transformerless High Voltage Gain Converter With Low Voltage Stresses on Switches and Diodes. IEEE Transactions on Power Electronics, 2019, 34, 10600-10609.	5.4	38
50	A modified integral sliding mode control to lateral stabilisation of 4-wheel independent drive electric vehicles. Vehicle System Dynamics, 2014, 52, 1584-1606.	2.2	36
51	Threeâ€phase softâ€switchingâ€based interleaved boost converter with high reliability. IET Power Electronics, 2017, 10, 377-386.	1.5	35
52	High Step-Up DC–DC Converter With Efficient Inductive Utilization. IEEE Transactions on Industrial Electronics, 2021, 68, 3831-3839.	5.2	35
53	A New Three-Winding Coupled Inductor Nonisolated Quasi-Z-Source High Step-Up DC–DC Converter. IEEE Transactions on Power Electronics, 2021, 36, 11523-11531.	5.4	35
54	High voltage gain halfâ€bridge quasiâ€ s witched boost inverter with reduced voltage stress on capacitors. IET Power Electronics, 2017, 10, 1095-1108.	1.5	34

#	Article	IF	CITATIONS
55	A new topology for multilevel inverter considering its optimal structures. Electric Power Systems Research, 2013, 103, 145-156.	2.1	33
56	Flying apacitor stacked multicell multilevel voltage source inverters: analysis and modelling. IET Power Electronics, 2014, 7, 2969-2987.	1.5	33
57	Switchedâ€diode structure for multilevel converter with reduced number of power electronic devices. IET Power Electronics, 2014, 7, 648-656.	1.5	33
58	Ultraâ€high stepâ€up twoâ€input DC–DC converter with lower switching losses. IET Power Electronics, 2019, 12, 2201-2213.	1.5	33
59	A Bridge-Type Fault Current Limiter for Energy Management of AC/DC Microgrids. IEEE Transactions on Power Electronics, 2017, 32, 9043-9050.	5.4	32
60	Study on the derivation of the continuous input current highâ€voltage gain DC/DC converters. IET Power Electronics, 2018, 11, 1652-1660.	1.5	32
61	A Three-Phase Dimmable Lighting System Using a Bidirectional Power Electronic Transformer. IEEE Transactions on Power Electronics, 2009, 24, 830-837.	5.4	31
62	Improved sensorless direct torque control method using adaptive flux observer. IET Power Electronics, 2014, 7, 1675-1684.	1.5	30
63	High stepâ€up DCâ€DC converter with reduced voltage stress on devices. International Transactions on Electrical Energy Systems, 2019, 29, e2789.	1.2	30
64	Optimal design of new cascade multilevel converter topology based on series connection of extended subâ€multilevel units. IET Power Electronics, 2016, 9, 1341-1349.	1.5	29
65	A Zetaâ€based switchedâ€capacitor DCâ€DC converter topology. International Journal of Circuit Theory and Applications, 2019, 47, 1302-1322.	1.3	29
66	Application of finite-time control Lyapunov function in low-power PMSG wind energy conversion systems for sensorless MPPT. International Journal of Electrical Power and Energy Systems, 2019, 106, 169-182.	3.3	29
67	Design, analysis, and implementation of a multiport DC–DC converter for renewable energy applications. IET Power Electronics, 2019, 12, 465-475.	1.5	29
68	Performance analysis and calculation of critical inductance and output voltage ripple of a simple nonâ€isolated multiâ€input bidirectional DCâ€DC converter. International Journal of Circuit Theory and Applications, 2018, 46, 543-564.	1.3	28
69	Extended configuration of dual active bridge DC–DC converter with reduced number of switches. IET Power Electronics, 2015, 8, 401-416.	1.5	27
70	Failure analysis and reliability evaluation of modulation techniques for neutral point clamped inverters—A usage model approach. Engineering Failure Analysis, 2017, 71, 90-104.	1.8	27
71	A New Transformer-Less Common Grounded Three-Level Grid-Tied Inverter With Voltage Boosting Capability. IEEE Transactions on Energy Conversion, 2021, 36, 1896-1909.	3.7	27
72	A new switchedâ€capacitor/switchedâ€inductor–based converter with high voltage gain and low voltage stress on switches. International Journal of Circuit Theory and Applications, 2019, 47, 591-611.	1.3	26

#	Article	IF	CITATIONS
73	Multilevel Nonsuperconducting Fault Current Limiter: Analysis and Practical Feasibility. IEEE Transactions on Power Electronics, 2017, 32, 6059-6068.	5.4	25
74	Full softâ€ s witching high stepâ€up DC–DC converter based on active resonant cell. IET Power Electronics, 2017, 10, 1729-1739.	1.5	25
75	New improved threeâ€phase hybrid multilevel inverter with reduced number of components. IET Power Electronics, 2017, 10, 1403-1412.	1.5	23
76	Operation and Design Consideration of an Ultrahigh Step-Up DC–DC Converter Featuring High Power Density. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6113-6123.	3.7	22
77	An improved Non-Isolated Multiple-Input buck dc-dc converter. , 2017, , .		21
78	Design of a new combined cascaded multilevel inverter based on developed H-bridge with reduced number of IGBTs and DC voltage sources. , 2018, , .		21
79	Bidirectional active charge equaliser for series onnected cells. IET Power Electronics, 2019, 12, 1229-1240.	1.5	20
80	New Concept for Fault Current Limiter With Voltage Restoration Capability. IEEE Transactions on Industrial Electronics, 2020, 67, 10001-10010.	5.2	20
81	Analysis and implementation of a modular isolated zeroâ€voltage switching bidirectional dc–dc converter. IET Power Electronics, 2014, 7, 2035-2049.	1.5	19
82	Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number. Ain Shams Engineering Journal, 2016, 7, 579-592.	3.5	19
83	Modified PWM control method for neutral point clamped multilevel inverters. , 2017, , .		19
84	New high stepâ€up twoâ€inputâ€singleâ€output converter with lowâ€voltage stresses on switches and zero input currents ripple. IET Power Electronics, 2018, 11, 2241-2252.	1.5	19
85	A modified grid-connected current source inverter for photovoltaic application. , 2015, , .		18
86	Single-Phase Inverter with Common Grounded Feature and Connected into Grid. , 2020, , .		18
87	Chattering free fullâ€order terminal slidingâ€mode control for maximum power point tracking of photovoltaic cells. IET Renewable Power Generation, 2017, 11, 85-91.	1.7	17
88	Reliability evaluation of a fault-tolerant three-phase interleaved DC-DC boost converter. Transactions of the Institute of Measurement and Control, 2019, 41, 1278-1289.	1.1	17
89	Analysis and implementation of a novel three input DCâ€DC boost converter for sustainable energy applications. International Transactions on Electrical Energy Systems, 2019, 29, e2801.	1.2	17
90	Interleaved high stepâ€up zeroâ€voltage zeroâ€current switching boost DC–DC converter. IET Power Electronics, 2020, 13, 96-103.	1.5	16

#	Article	IF	CITATIONS
91	A new cascaded multilevel inverter with series and parallel connection ability of DC voltage sources. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23, 85-102.	0.9	15
92	An Improved Symmetric H-Bridge Multilevel Converter Topology; An Attempt to Reduce Power Losses. Journal of Circuits, Systems and Computers, 2018, 27, 1850187.	1.0	15
93	A multiâ€inputâ€singleâ€output high stepâ€up DCâ€DC converter with lowâ€voltage stress across semiconductors. International Transactions on Electrical Energy Systems, 2019, 29, e12123.	1.2	15
94	Single-Inductor Dual-Output DC–DC Converter With Capability of Feeding a Constant Power Load in Open-Loop Manner. IEEE Transactions on Industrial Electronics, 2019, 66, 6906-6915.	5.2	15
95	A Study on an Improved Three-Winding Coupled Inductor Based DC/DC Boost Converter with Continuous Input Current. Energies, 2020, 13, 1780.	1.6	15
96	Fault Current Limiter Dynamic Voltage Restorer (FCL-DVR) With Reduced Number of Components. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 526-534.	3.0	15
97	Unified power flow controller based on two shunt converters and a series capacitor. Electric Power Systems Research, 2010, 80, 1511-1519.	2.1	14
98	Improvement of the Performance of the Cascaded Multilevel Inverters Using Power Cells with Two Series Legs. Journal of Power Electronics, 2013, 13, 223-231.	0.9	14
99	S4 grid-connected single-phase transformerless inverter for PV application. , 2016, , .		14
100	A new singleâ€phase multilevel converter topology with reduced power electronic devices, voltage rating on switches, and power losses. International Journal of Circuit Theory and Applications, 2018, 46, 1372-1391.	1.3	14
101	A Limited Common-Mode Current Switched-Capacitor Multilevel Inverter Topology and Its Performance and Lifetime Evaluation in Grid-Connected Photovoltaic Applications. Energies, 2021, 14, 1915.	1.6	14
102	A New Structure of Fault Current Limiter Based on the System Impedance With Fast Eliminating Method and Simple Control Procedure. IEEE Transactions on Industrial Electronics, 2018, 65, 261-269.	5.2	13
103	High stepâ€down/high stepâ€up interleaved bidirectional DC–DC converter with low voltage stress on switches. IET Power Electronics, 2020, 13, 104-115.	1.5	13
104	A new single-phase cascade multilevel inverter topology using four-level cells. , 2012, , .		12
105	Transformerless Inverter with Charge Pump Circuit Concept for PV Application. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, , 1-1.	3.7	12
106	Analysis and design of a softâ€switching boost DC/DC converter. IET Power Electronics, 2017, 10, 1353-1362.	1.5	12
107	Operation and design analysis of an interleaved high stepâ€up DC–DC converter with improved harnessing of magnetic energy. International Journal of Circuit Theory and Applications, 2021, 49, 221-243.	1.3	12
108	High Performance FPGA Based Digital Space Vector PWM Three Phase Voltage Source Inverter. International Journal of Modern Education and Computer Science, 2013, 5, 62-71.	2.4	12

MEHRAN SABAHI

#	Article	IF	CITATIONS
109	Two-input boost converter for street-lighting applications. Computers and Electrical Engineering, 2021, 92, 107126.	3.0	11
110	Modeling and stability analysis of buck-boost dc-dc converter based on Z-transform. , 2012, , .		10
111	A multi-port high step-Up DC-DC converter with reduced normalized voltage stress on switches/diodes. , 2018, , .		10
112	Singleâ€phase common mode transformerâ€less softâ€switching gridâ€connected inverter with eliminated leakage current. International Journal of Circuit Theory and Applications, 2019, 47, 838-861.	1.3	10
113	Common Grounded High Step-up Z-Source DC-DC Converter with Coupled Inductors. , 2021, , .		10
114	Back-to-back stacked multicell converter. , 2012, , .		9
115	Modified Multilevel Inverters Using Series and Parallel Connection of DC Voltage Sources. Arabian Journal for Science and Engineering, 2014, 39, 3077-3094.	1.1	9
116	Extended SVM algorithms for multilevel trans-Z-source inverter. Ain Shams Engineering Journal, 2016, 7, 265-274.	3.5	9
117	Voltage Boosting Technique for Switched Capacitor Based Cascaded H-Bridge Multilevel Inverter. , 2020, , .		9
118	Online Dynamic Parameter Estimation of Transformer Equivalent Circuit. , 2006, , .		8
119	Improvement of Multilevel Inverters Topology Using Series and Parallel Connections of DC Voltage Sources. Arabian Journal for Science and Engineering, 2014, 39, 1117-1127.	1.1	8
120	A conventional dynamic voltage restorer with fault current limiting capability. Procedia Computer Science, 2017, 120, 750-757.	1.2	8
121	Two different nonâ€shootâ€through operating modes for generating changeable general boost factor in switched Zâ€source inverters with modified modulation technique. IET Power Electronics, 2019, 12, 1686-1696.	1.5	8
122	Two new transformerless high stepâ€down DC–DC converters. IET Power Electronics, 2019, 12, 1205-1219.	1.5	8
123	New basic unit and cascaded multilevel inverters with reduced power electronic devices. International Journal of Electronics, 2020, 107, 1177-1194.	0.9	8
124	A New Single-Phase Single-Stage Switched-Capacitor based Seven-Level Inverter for Grid-Tied Photovoltaic Applications. , 2021, , .		8
125	Design and modelling of a new three winding coupled inductor based high stepâ€up DC–DC converter for renewable energy applications. IET Power Electronics, 2022, 15, 1322-1339.	1.5	8

126 A New Switching Strategy for 3-Phase to 2-Phase Matrix Converters. , 2006, , .

7

#	Article	IF	CITATIONS
127	An improved topology of electronic ballast with wide dimming range, PFC and low switching losses using PWM-controlled soft-switching inverter. Electric Power Systems Research, 2008, 78, 975-984.	2.1	7
128	A Sepic based high step-up DC-DC converter integrating coupled inductor for renewable energy applications. , 2017, , .		7
129	A New Non-Isolated Buck-Boost Converter with High Voltage Gain and Positive Output Voltage for Renewable Energy Applications. , 2019, , .		7
130	New softâ€switched high gain threeâ€port DC–DC converter with coupled inductors. IET Power Electronics, 2020, 13, 4562-4571.	1.5	7
131	Analysis of the nonâ€isolated stepâ€up network based on impedance source converter. IET Power Electronics, 2022, 15, 1201-1216.	1.5	7
132	A New Structure of Quasi Z-Source-Based Cascaded Multilevel Inverter. Journal of Circuits, Systems and Computers, 2017, 26, 1750203.	1.0	6
133	A Developed Two-Leg Ladder Multilevel Converter Structure. Journal of Circuits, Systems and Computers, 2018, 27, 1850183.	1.0	6
134	Commonâ€ground nonâ€isolated highâ€gain DC/DC converter for low powerdistributed generation photovoltaic systems. IET Power Electronics, 2020, 13, 2589-2597.	1.5	6
135	Doubleâ€fed and doubleâ€switch active Zâ€source inverter with general variable high boost factor. IET Power Electronics, 2020, 13, 680-692.	1.5	6
136	Design and implementation of an improved powerâ€electronic system for feeding loads of smart homes in remote areas using renewable energy sources. IET Renewable Power Generation, 2021, 15, 1-16.	1.7	6
137	Power quality enhancement using a new hybrid active power filter under non-ideal source and load conditions. , 2009, , .		5
138	A Simple Technique for Optimal Selection of Degree of Hybridization (DOH) in Parallel Passenger Hybrid Cars. Automatika, 2015, 56, 33-41.	1.2	5
139	A Non-Isolated Double-Input High Voltage Gain DC-DC Converter with Reduced Normalized Voltage Stress. , 2018, , .		5
140	A Class of Quasi-Cuk DC/DC Converters: Steady-State Analysis and Design. Electric Power Components and Systems, 2018, 46, 581-599.	1.0	5
141	Soft commutated soft-two-switch DC/DC converter. , 2018, , .		5
142	Modified Single-Phase Z-Source Converter Based on Gamma Structure. , 2020, , .		5
143	Novel methodology for direct speed control of a permanent magnet synchronous motor with sensorless operation. IET Electric Power Applications, 2021, 15, 728-741.	1.1	5
144	A new boost type single source seven-level switched-capacitor based inverter with reduced current stress over the components. Computers and Electrical Engineering, 2022, 101, 108160.	3.0	5

#	ARTICLE	IF	CITATIONS
145	Development of modulation strategies for three-phase to two-phase matrix converters. International Journal of Power Electronics, 2010, 2, 82.	0.1	4
146	Highâ€voltage conversion ratio dualâ€input DC–DC converter operating in a wide duty cycle range and canceling input current ripple. International Journal of Circuit Theory and Applications, 2021, 49, 4162-4187.	1.3	4
147	A Novel Modulation Method to Reduce Leakage Current in Transformerless Z-source PV Inverters. , 2020, , .		4
148	Half-Bridge Trans-Z-Source Inverter with High Boost Factor. , 2021, , .		4
149	A New Continuous Input Current Nonisolated Bidirectional Interleaved Buck-Boost DC-DC Converter. International Transactions on Electrical Energy Systems, 2022, 2022, 1-19.	1.2	4
150	Tracking of X-Y direction positions with using permanent magnet linear synchronous motors. , 2014, , .		3
151	Dynamic modeling of modular fuel cell for maximum power point tracking and torque ripple reduction in direct torque control of induction motor. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23, 317-334.	0.9	3
152	Two new transformer-based isolated seven-level inverters. , 2017, , .		3
153	Compensation of voltage sags and swells using photovoltaic source based DVR. , 2017, , .		3
154	Probabilistic dispatch in hybrid-microgrid system with considering energy arbitrage. Journal of Renewable and Sustainable Energy, 2019, 11, 025904.	0.8	3
155	Markov Chain Modeling for Reliability Analysis of Multi-Phase Buck Converters. Journal of Circuits, Systems and Computers, 2020, 29, 2050139.	1.0	3
156	Multiâ€input multiâ€phase transformerless large voltage conversion ratio DC/DC converter. International Journal of Circuit Theory and Applications, 2021, 49, 4294-4315.	1.3	3
157	A transformerâ€less DC–DC converter with high voltage conversion ratio adopting inverting voltage lift cell. IET Circuits, Devices and Systems, 2022, 16, 257-271.	0.9	3
158	A New Soft Starting Method for Wound-Rotor Induction Motor. Journal of Electrical Engineering, 2011, 62, 31-36.	0.4	2
159	Enhancement of instantaneous power theory under unbalanced grid voltages condition using positive sinusoidal signal regulator. , 2012, , .		2
160	Power quality improvement using a power electronic transformer based DVR. , 2015, , .		2
161	Cascaded Multilevel Inverters Using Proposed Series Sub-multilevel Basic Blocks with Reduced Switching Devices. Electric Power Components and Systems, 2017, 45, 1691-1704.	1.0	2
162	Practical data connection between MATLAB and microcontrollers using virtual serial port and MicroPython Pyboard: A survey. IET Circuits, Devices and Systems, 2021, 15, 485-492.	0.9	2

#	Article	IF	CITATIONS
163	Bidirectional Quasi-Cuk DC/DC Converter with Reduced Voltage Stress on Capacitor and Capability of Changing the Output Polarity. Journal of Electrical Engineering and Technology, 2017, 12, 1108-1113.	1.2	2
164	A High Step Up Multi-Input DC/DC SEPIC-Based Converter with Coupled Inductor for Renewable Applications. Electric Power Components and Systems, 2021, 49, 767-781.	1.0	2
165	Family of Interleaved High Step-up DC-DC Converters Utilizing Multi-Winding Coupled Inductors. , 2022, , .		2
166	A New Bi-directional ZVS Inverter by Estimated Phase Shifting for Non-linear Loads. , 0, , .		1
167	Development of Pulse Width Modulation Technique for Controlling Inverters Under Balanced and Unbalanced Operations. Arabian Journal for Science and Engineering, 2014, 39, 2941-2951.	1.1	1
168	Maximum power point tracking control method in high gain transformer-based inverters for photovoltaic application. , 2017, , .		1
169	New structure of nonsuperconducting fault current limiter for wide ranges of currents based on PWM switching strategy. , 2017, , .		1
170	Dual-output step-down soft switching current-fed full-bridge DC-DC converter. , 2017, , .		1
171	Improved P&O Algorithm for Maximum Power Point Tracking at the Photovoltaic Array Using an Interleaved Boost Converter. , 2020, , .		1
172	Tapped inductor based switched boost inverter: Analysis and implementation. International Journal of Circuit Theory and Applications, 0, , .	1.3	1
173	Partial Two-Stage Four-level Inverter for Grid-tied PV Application. , 2022, , .		1
174	Design and control of an improved Zâ€H8 inverter for photovoltaic applications. International Journal of Circuit Theory and Applications, 0, , .	1.3	1
175	A modular isolated batteryâ€integrated multiport stepâ€up DC–DC converter for hybrid energy applications. IET Power Electronics, 0, , .	1.5	1
176	Improve the dynamic performance of doubly fed induction generator under load variation in an islanded micro-grid. , 2012, , .		0
177	Integrated magnetic structure for the DC/DC converter of hybrid energy storage system. , 2018, , .		0
178	An Extended Quasi-switched Z-Source Inverter. , 2019, , .		0
179	Investigating of bidirectional dc–dc converter in different operational modes and designing of component considering the minimum OVR and filter size. IET Power Electronics, 2020, 13, 191-201.	1.5	0