Xu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447015/publications.pdf Version: 2024-02-01

XII 7HANC

#	Article	IF	CITATIONS
1	Scalable and Versatile Transfer of Sensitive Two-dimensional Materials. Nano Letters, 2022, 22, 23, 2342-2349.	9.1	4
2	Circuit‣evel Memory Technologies and Applications based on 2D Materials. Advanced Materials, 2022, 34, .	21.0	17
3	Kirigami Engineering—Nanoscale Structures Exhibiting a Range of Controllable 3D Configurations. Advanced Materials, 2021, 33, e2005275.	21.0	21
4	Monolithic fullâ€color microdisplay using patterned quantum dot photoresist on dualâ€wavelength LED epilayers. Journal of the Society for Information Display, 2021, 29, 157-165.	2.1	19
5	Vertical βâ€Ga ₂ O ₃ Schottky Barrier Diodes with Enhanced Breakdown Voltage and High Switching Performance. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900497.	1.8	34
6	23â€5: <i>Lateâ€News Paper:</i> Highâ€Resolution Monolithic Micro‣ED Fullâ€color Microâ€display. Digest of Technical Papers SID International Symposium, 2020, 51, 339-342.	0.3	6
7	Selective lateral photoelectrochemical wet etching of InGaN nanorods. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 060602.	1.2	2
8	Forward Conduction Instability of Quasi-Vertical GaN p-i-n Diodes on Si Substrates. IEEE Transactions on Electron Devices, 2020, 67, 3992-3998.	3.0	7
9	GaN Single Nanowire p–i–n Diode for High-Temperature Operations. ACS Applied Electronic Materials, 2020, 2, 719-724.	4.3	7
10	Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566, 368-372.	27.8	266
11	Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions. Science Advances, 2019, 5, eaav1493.	10.3	43
12	Active Matrix Monolithic LED Micro-Display Using GaN-on-Si Epilayers. IEEE Photonics Technology Letters, 2019, 31, 865-868.	2.5	66
13	High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances, 2018, 4, eaat5780.	10.3	167
14	MoS ₂ Phase-junction-based Schottky Diodes for RF Electronics. , 2018, , .		8
15	Fully- and Quasi-Vertical GaN-on-Si p-i-n Diodes: High Performance and Comprehensive Comparison. IEEE Transactions on Electron Devices, 2017, 64, 809-815.	3.0	45
16	Switching performance of quasi-vertical GaN-based p-i-n diodes on Si. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600817.	1.8	15
17	Role of Molecular Sieves in the CVD Synthesis of Largeâ€Area 2D MoTe ₂ . Advanced Functional Materials, 2017, 27, 1603491.	14.9	58
18	Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation. IEEE Electron Device Letters, 2017, 38, 1097-1100.	3.9	136

Xu Zhang

#	Article	IF	CITATIONS
19	Fully-integrated AMLED micro display system with a hybrid voltage regulator. , 2017, , .		10
20	Parallel Stitching of 2D Materials. Advanced Materials, 2016, 28, 2322-2329.	21.0	195
21	Fully Vertical GaN p-i-n Diodes Using GaN-on-Si Epilayers. IEEE Electron Device Letters, 2016, 37, 636-639.	3.9	86
22	Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 12900-12909.	5.6	35
23	Synthesis of Highâ€Quality Largeâ€Area Homogenous 1T′ MoTe ₂ from Chemical Vapor Deposition. Advanced Materials, 2016, 28, 9526-9531.	21.0	125
24	Breakdown Ruggedness of Quasi-Vertical GaN-Based p-i-n Diodes on Si Substrates. IEEE Electron Device Letters, 2016, 37, 1158-1161.	3.9	30
25	Correction: Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 13079-13079.	5.6	0
26	Vertical LEDs on Rigid and Flexible Substrates Using GaN-on-Si Epilayers and Au-Free Bonding. IEEE Transactions on Electron Devices, 2016, 63, 1587-1593.	3.0	17
27	Xâ€Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects. Advanced Functional Materials, 2015, 25, 4163-4169.	14.9	46
28	Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Letters, 2015, 15, 2104-2110.	9.1	404
29	High-Performance WSe ₂ Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. Nano Letters, 2015, 15, 4928-4934.	9.1	204
30	Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS ₂ . Nano Letters, 2014, 14, 3033-3040.	9.1	464
31	GaN-on-Si Vertical Schottky and p-n Diodes. IEEE Electron Device Letters, 2014, 35, 618-620.	3.9	154
32	Impact of Chlorine Functionalization on High-Mobility Chemical Vapor Deposition Grown Graphene. ACS Nano, 2013, 7, 7262-7270.	14.6	111
33	Characterization of Bundled and Individual Triple-Walled Carbon Nanotubes by Resonant Raman Spectroscopy. ACS Nano, 2013, 7, 2381-2387.	14.6	30
34	Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the IEEE, 2013, 101, 1638-1652.	21.3	46
35	Two-dimensional materials for ubiquitous electronics. , 2013, , .		1
36	Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy. Nano Research, 0, , .	10.4	4