Nicholas J Rettko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469978/publications.pdf

Version: 2024-02-01

430754 434063 1,291 31 18 31 citations g-index h-index papers 36 36 36 2452 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective vulnerabilities in the proteostasis network of castration-resistant prostate cancer. Cell Chemical Biology, 2022, 29, 490-501.e4.	2.5	6
2	Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chemical Biology, 2022, 17, 545-555.	1.6	3
3	Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nature Chemical Biology, 2021, 17, 113-121.	3.9	78
4	Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs, 2021, 13, 1893426.	2.6	22
5	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
6	Individualized management of genetic diversity in Niemann-Pick C1 through modulation of the Hsp70 chaperone system. Human Molecular Genetics, 2020, 29, 1-19.	1.4	18
7	Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28046-28055.	3.3	219
8	Tumor Necrosis Factor- $\hat{l}\pm$ Trimer Disassembly and Inactivation via Peptide-Small Molecule Synergy. ACS Chemical Biology, 2020, 15, 2116-2124.	1.6	5
9	Differential scanning fluorimetry (DSF) screen to identify inhibitors of Hsp60 protein–protein interactions. Organic and Biomolecular Chemistry, 2020, 18, 4157-4163.	1.5	10
10	Neutral analogs of the heat shock protein 70 (Hsp70) inhibitor, JG-98. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126954.	1.0	14
11	Mortalin (HSPA9) facilitates $\langle i \rangle$ BRAF $\langle i \rangle$ -mutant tumor cell survival by suppressing ANT3-mediated mitochondrial membrane permeability. Science Signaling, 2020, 13, .	1.6	24
12	A Novel Radioligand Reveals Tissue Specific Pharmacological Modulation of Glucocorticoid Receptor Expression with Positron Emission Tomography. ACS Chemical Biology, 2020, 15, 1381-1391.	1.6	4
13	Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene, 2020, 39, 4257-4270.	2.6	22
14	Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nature Communications, 2019, 10, 3562.	5.8	45
15	Zika Virus Dependence on Host Hsp70 Provides a Protective Strategy against Infection and Disease. Cell Reports, 2019, 26, 906-920.e3.	2.9	81
16	Inhibitors and chemical probes for molecular chaperone networks. Journal of Biological Chemistry, 2019, 294, 2151-2161.	1.6	65
17	Rational design and screening of peptide-based inhibitors of heat shock factor 1 (HSF1). Bioorganic and Medicinal Chemistry, 2018, 26, 5299-5306.	1.4	9
18	High-throughput screen for inhibitors of protein–protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. Journal of Biological Chemistry, 2018, 293, 4014-4025.	1.6	28

#	Article	IF	CITATIONS
19	X-linked inhibitor of apoptosis protein (XIAP) is a client of heat shock protein 70 (Hsp70) and a biomarker of its inhibition. Journal of Biological Chemistry, 2018, 293, 2370-2380.	1.6	37
20	Heat Shock Protein 70 (Hsp70) Suppresses RIP1-Dependent Apoptotic and Necroptotic Cascades. Molecular Cancer Research, 2018, 16, 58-68.	1.5	42
21	Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biology Open, 2018, 7, .	0.6	17
22	A Local Allosteric Network in Heat Shock Protein 70 (Hsp70) Links Inhibitor Binding to Enzyme Activity and Distal Protein–Protein Interactions. ACS Chemical Biology, 2018, 13, 3142-3152.	1.6	18
23	Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 4022-4035.	0.4	100
24	Exploration of Benzothiazole Rhodacyanines as Allosteric Inhibitors of Protein–Protein Interactions with Heat Shock Protein 70 (Hsp70). Journal of Medicinal Chemistry, 2018, 61, 6163-6177.	2.9	84
25	KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Science Translational Medicine, 2018, 10, .	5.8	54
26	Novel Allosteric Inhibitors of Heat Shock Protein 70 As Agents to Probe Protein Homeostasis and Overcome Proteasome Inhibitor Resistance in Multiple Myeloma. Blood, 2018, 132, 3212-3212.	0.6	1
27	Allosteric heat shock protein 70 inhibitors block hepatitis C virus assembly. International Journal of Antimicrobial Agents, 2016, 47, 289-296.	1.1	23
28	Anticancer Effects of Targeting Hsp70 in Tumor Stromal Cells. Cancer Research, 2016, 76, 5926-5932.	0.4	31
29	Protein Cross-Linking Capillary Electrophoresis for Protein–Protein Interaction Analysis. Analytical Chemistry, 2016, 88, 8272-8278.	3.2	18
30	Targeting diverse protein–protein interaction interfaces with $\hat{l}\pm/\hat{l}^2$ -peptides derived from the Z-domain scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4552-4557.	3.3	93
31	Concise synthesis of spergualin-inspired molecules with broad-spectrum antibiotic activity. MedChemComm, 2015, 6, 912-918.	3.5	2