Nathan H Schumaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circuitâ€theory applications to connectivity science and conservation. Conservation Biology, 2019, 33, 239-249.	2.4	216
2	ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON. , 2004, 14, 313-324.		185
3	Modeling joint production of wildlife and timber. Journal of Environmental Economics and Management, 2004, 48, 997-1017.	2.1	179
4	Impacts of Landscape Change on Wolf Restoration Success: Planning a Reintroduction Program Based on Static and Dynamic Spatial Models. Conservation Biology, 2003, 17, 536-548.	2.4	121
5	Extinction Debt of Protected Areas in Developing Landscapes. Conservation Biology, 2004, 18, 1110-1120.	2.4	105
6	USE OF POPULATION VIABILITY ANALYSIS AND RESERVE SELECTION ALGORITHMS IN REGIONAL CONSERVATION PLANS. , 2003, 13, 1773-1789.		101
7	Genetic factors in threatened species recovery plans on three continents. Frontiers in Ecology and the Environment, 2016, 14, 433-440.	1.9	93
8	A multi-model framework for simulating wildlife population response to land-use and climate change. Ecological Modelling, 2008, 219, 77-91.	1.2	74
9	Developing a production possibility set of wildlife species persistence and timber harvest value. Canadian Journal of Forest Research, 2002, 32, 1329-1342.	0.8	72
10	HexSim: a modeling environment for ecology and conservation. Landscape Ecology, 2018, 33, 197-211.	1.9	59
11	Assessing critical habitat: Evaluating the relative contribution of habitats to population persistence. Biological Conservation, 2010, 143, 2229-2237.	1.9	54
12	Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling, 2016, 335, 64-73.	1.2	54
13	Defining Recovery Goals and Strategies for Endangered Species: The Wolf as a Case Study. BioScience, 2006, 56, 25.	2.2	53
14	Incorporating evolutionary processes into population viability models. Conservation Biology, 2015, 29, 755-764.	2.4	51
15	Assessing the potential impacts of alternative landscape designs on amphibian population dynamics. Landscape Ecology, 2003, 18, 65-81.	1.9	47
16	Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecology, 2014, 29, 579-592.	1.9	47
17	Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation. Ecological Modelling, 2017, 359, 449-459.	1.2	37
18	ANALYSIS OF SENSITIVITY AND UNCERTAINTY IN AN INDIVIDUALâ€BASED MODEL OF A THREATENED WILDLIFE SPECIES. Natural Resource Modelling, 2015, 28, 37-58.	0.8	36

NATHAN H SCHUMAKER

#	Article	IF	CITATIONS
19	Intrinsic and extrinsic drivers of source–sink dynamics. Ecology and Evolution, 2016, 6, 892-904.	0.8	34
20	Simulating the consequences of roads for wildlife population dynamics. Landscape and Urban Planning, 2020, 193, 103672.	3.4	30
21	How interactions between animal movement and landscape processes modify local range dynamics and extinction risk. Biology Letters, 2014, 10, 20140198.	1.0	25
22	Dependence of the Endangered Black apped Vireo on Sustained Cowbird Management. Conservation Biology, 2014, 28, 561-571.	2.4	23
23	Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations. PLoS ONE, 2015, 10, e0133351.	1.1	23
24	Individual based modeling of fish migration in a 2-D river system: model description and case study. Landscape Ecology, 2019, 34, 737-754.	1.9	22
25	Spatial Demographic Models to Inform Conservation Planning of Golden Eagles in Renewable Energy Landscapes. Journal of Raptor Research, 2017, 51, 234-257.	0.2	21
26	Conservation planning for species recovery under the Endangered Species Act: A case study with the Northern Spotted Owl. PLoS ONE, 2019, 14, e0210643.	1.1	20
27	Spatial uncertainty analysis of population models. Ecological Modelling, 2005, 185, 13-27.	1.2	19
28	Divergence in sink contributions to population persistence. Conservation Biology, 2015, 29, 1674-1683.	2.4	18
29	An Analysis of Late-Seral Forest Connectivity in Western Oregon, U.S.A Conservation Biology, 2002, 16, 1409-1421.	2.4	16
30	Assessing contributions of cold-water refuges to reproductive migration corridor conditions for adult salmon and steelhead trout in the Columbia River, USA. Journal of Ecohydraulics, 2022, 7, 111-123.	1.6	16
31	Landscape resistance to dispersal: simulating long-term effects of human disturbance on a small and isolated wolf population in southwestern Manitoba, Canada. Environmental Monitoring and Assessment, 2012, 184, 6923-6934.	1.3	15
32	Modeling Agassiz's desert tortoise population response to anthropogenic stressors. Journal of Wildlife Management, 2016, 80, 414-429.	0.7	15
33	HOW BIG AND HOW CLOSE? HABITAT PATCH SIZE AND SPACING TO CONSERVE A THREATENED SPECIES. Natural Resource Modelling, 2013, 26, 194-214.	0.8	14
34	A priori assessment of reintroduction strategies for a native ungulate: using HexSim to guide release site selection. Landscape Ecology, 2014, 29, 689-701.	1.9	14
35	A multispecies test of source–sink indicators to prioritize habitat for declining populations. Conservation Biology, 2018, 32, 648-659.	2.4	14
36	Evaluating Habitat as a Surrogate for Population Viability Using a Spatially Explicit Population Model. Environmental Monitoring and Assessment, 2004, 94, 85-100.	1.3	12

NATHAN H SCHUMAKER

#	Article	IF	CITATIONS
37	Weighing the relative potential impacts of climate change and landâ€use change on an endangered bird. Ecology and Evolution, 2016, 6, 4468-4477.	0.8	11
38	Spatially-explicit model for assessing wild dog control strategies in Western Australia. Ecological Modelling, 2018, 368, 246-256.	1.2	11
39	Effects of landscape and patch-level attributes on regional population persistence. Journal for Nature Conservation, 2015, 26, 56-64.	0.8	10
40	Prioritizing actions for the recovery of endangered species: Emergent insights from Greater Sage-grouse simulation modeling. Biological Conservation, 2018, 218, 134-143.	1.9	10
41	Assessing source-sink stability in the context of management and land-use change. Landscape Ecology, 2019, 34, 259-274.	1.9	9
42	A spatially explicit model for estimating risks of pesticide exposure to bird populations. PLoS ONE, 2021, 16, e0252545.	1.1	9
43	Recent Advances and Current Challenges in Applying Source-Sink Theory to Species Conservation. Current Landscape Ecology Reports, 2019, 4, 51-60.	1.1	8
44	Land use change and rodenticide exposure trump climate change as the biggest stressors to San Joaquin kit fox. PLoS ONE, 2019, 14, e0214297.	1.1	5
45	A novel modelling framework to explicitly simulate predator interaction with poison baits. Wildlife Research, 2021, 48, 64.	0.7	3
46	Condors in space: an individual-based population model for California condor reintroduction planning. Landscape Ecology, 2022, 37, 1431-1452.	1.9	3
47	virToad: simulating the spatiotemporal population dynamics and management of a global invader. Landscape Ecology, 2022, 37, 2273-2292.	1.9	3
48	The scientific basis for modeling Northern Spotted Owl habitat: A response to Loehle, Irwin, Manly, and Merrill. Forest Ecology and Management, 2015, 358, 355-360.	1.4	2
49	Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA. Land, 2021, 10, 438.	1.2	1