
Xiong-Wei Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469714/publications.pdf Version: 2024-02-01

XIONG-WELNI

#	Article	IF	CITATIONS
1	The effect of particle size on flow in a continuous oscillatory baffled reactor using <scp>CFD</scp> . Canadian Journal of Chemical Engineering, 2022, 100, .	1.7	5
2	Continuous Hydrogenation of Alkynol in a Continuous Oscillatory Baffled Reactor. Organic Process Research and Development, 2021, 25, 206-211.	2.7	2
3	The effects of modes of hydrogen input and reactor configuration on reaction rate and H 2 efficiency in the catalytic hydrogenation of alkynol to alkenol. Canadian Journal of Chemical Engineering, 2020, 98, 308-315.	1.7	4
4	Investigation of dissolution rate kinetics of bulk pharmaceutical feed streams within a stirred tank vessel and a twin screw extruder. Pharmaceutical Development and Technology, 2020, 25, 219-226.	2.4	1
5	In Situ Measurement of 3D Crystal Size Distribution by Double-View Image Analysis with Case Study on <scp>l</scp> -Glutamic Acid Crystallization. Industrial & Engineering Chemistry Research, 2020, 59, 4646-4658.	3.7	15
6	Another Critical Look at Three-Phase Catalysis. Pharmaceutical Fronts, 2020, 02, e117-e127.	0.8	1
7	Effects of solvents and impurity on crystallization kinetics and crystal properties in a reactive crystallization of paracetamol. Journal of Crystal Growth, 2019, 523, 125150.	1.5	13
8	Reactive Crystallization of Paracetamol in a Continuous Oscillatory Baffled Reactor. Organic Process Research and Development, 2019, 23, 882-890.	2.7	30
9	Smoothed particle hydrodynamics – A new approach for modeling flow in oscillatory baffled reactors. Computers and Chemical Engineering, 2019, 124, 14-27.	3.8	4
10	A Comparative Evaluation of Hydrogenation of 3-Butyn-2-ol over Pd/Al ₂ O ₃ in an Oscillatory Baffled Reactor and a Commercial Parr Reactor. Organic Process Research and Development, 2019, 23, 38-44.	2.7	10
11	Parameter Estimation for Batch Crystallization Processes Using Automatic Differentiation. , 2018, , .		1
12	Chiral symmetry breaking due to impeller size in cooling crystallization of sodium chlorate. CrystEngComm, 2018, 20, 6894-6899.	2.6	7
13	On the evaluation of power density models for oscillatory baffled reactors using CFD. Chemical Engineering and Processing: Process Intensification, 2018, 134, 153-162.	3.6	19
14	On the Use of a Twin Screw Extruder for Continuous Solid Feeding and Dissolution for Continuous Flow Processes. Organic Process Research and Development, 2018, 22, 1373-1382.	2.7	5
15	Effects of water and temperature on reaction mechanism and crystal properties in a reactive crystallization of paracetamol. Chemical Engineering and Processing: Process Intensification, 2018, 131, 20-26.	3.6	8
16	Effect of surface scraping on chiral symmetry in seeded cooling crystallization of sodium chlorate. CrystEngComm, 2018, 20, 3696-3701.	2.6	2
17	Online Detection of Particle Agglomeration during Solution Crystallization by Microscopic Double-View Image Analysis. Industrial & Engineering Chemistry Research, 2017, 56, 11257-11269.	3.7	22
18	LQ decomposition based subspace identification under deterministic type disturbance. Systems Science and Control Engineering, 2017, 5, 243-251.	3.1	2

XIONG-WEI NI

#	Article	IF	CITATIONS
19	Image analysis for in-situ detection of agglomeration for needle-like crystals. , 2017, , .		6
20	An Investigation into Parameters Affecting Crystal Purity of Urea in a Stirred Tank and an Oscillatory Baffled Crystallizer. Chemical Engineering Communications, 2016, 203, 1189-1197.	2.6	5
21	On the effect of added impurity on crystal purity of urea in an oscillatory baffled crystallizer and a stirred tank crystallizer. Journal of Crystal Growth, 2016, 442, 81-88.	1.5	11
22	Characterization and modelling of antisolvent crystallization of salicylic acid in a continuous oscillatory baffled crystallizer. Chemical Engineering and Processing: Process Intensification, 2015, 97, 180-186.	3.6	49
23	On the investigation of the effect of apparatus configurations on the nucleation mechanisms in a cooling crystallization of sodium chlorate. Canadian Journal of Chemical Engineering, 2014, 92, 1920-1925.	1.7	5
24	An investigation into the effect of mixing on the secondary nucleation of sodium chlorate in a stirred tank and an oscillatory baffled crystallizer. CrystEngComm, 2014, 16, 690-697.	2.6	27
25	Evaluation of axial dispersion and mixing performance in oscillatory baffled reactors using <scp>CFD</scp> . Journal of Chemical Technology and Biotechnology, 2013, 88, 553-562.	3.2	36
26	Probing into Nucleation Mechanisms of Cooling Crystallization of Sodium Chlorate in a Stirred Tank Crystallizer and an Oscillatory Baffled Crystallizer. Crystal Growth and Design, 2012, 12, 2525-2532.	3.0	21
27	Determination of metastable zone width, mean particle size and detectable number density using video imaging in an oscillatory baffled crystallizer. CrystEngComm, 2012, 14, 2944.	2.6	35
28	Evaluation of Growth Kinetics of Antisolvent Crystallization of Paracetamol in an Oscillatory Baffled Crystallizer Utilizing Video Imaging. Crystal Growth and Design, 2011, 11, 3994-4000.	3.0	28
29	Online Evaluation of Paracetamol Antisolvent Crystallization Growth Rate with Video Imaging in an Oscillatory Baffled Crystallizer. Crystal Growth and Design, 2011, 11, 719-725.	3.0	33
30	Effects of mixing, seeding, material of baffles and final temperature on solution crystallization of I-glutamic acid in an oscillatory baffled crystallizer. Chemical Engineering Journal, 2010, 156, 226-233.	12.7	55
31	Continuous Crystallization of Pharmaceuticals Using a Continuous Oscillatory Baffled Crystallizer. Organic Process Research and Development, 2009, 13, 1357-1363.	2.7	265
32	On the effect of wax content on paraffin wax deposition in a batch oscillatory baffled tube apparatus. Chemical Engineering Journal, 2008, 137, 205-213.	12.7	40
33	Effects of Cooling Rate and Solution Concentration on Solution Crystallization of <scp>l</scp> -Glutamic Acid in an Oscillatory Baffled Crystallizer. Crystal Growth and Design, 2008, 8, 2875-2881.	3.0	49
34	Determination of breakage rates of oil droplets in a continuous oscillatory baffled tube. Chemical Engineering Science, 2006, 61, 6902-6917.	3.8	6
35	On the characterisation of wax deposition in an oscillatory baffled device. Journal of Chemical Technology and Biotechnology, 2006, 81, 1905-1914.	3.2	2
36	An investigation of the effect of viscosity on mixing in an oscillatory baffled column using digital particle image velocimetry and computational fluid dynamics simulation. Chemical Engineering Journal, 2005, 112, 197-210.	12.7	32

XIONG-WEI NI

#	Article	IF	CITATIONS
37	Characterization of a gas-liquid OBC: Bubble size and gas holdup. AICHE Journal, 2004, 50, 3019-3033.	3.6	16
38	Effect of hydrodynamics on mass transfer in a gas–liquid oscillatory baffled column. Chemical Engineering Journal, 2004, 99, 59-68.	12.7	35
39	Modelling of droplet breakage probabilities in an oscillatory baffled reactor. Chemical Engineering Science, 2004, 59, 2189-2200.	3.8	7
40	On the Crystal Polymorphic Forms ofl-Glutamic Acid Following Temperature Programmed Crystallization in a Batch Oscillatory Baffled Crystallizer. Crystal Growth and Design, 2004, 4, 1129-1135.	3.0	33
41	A study of velocity and residence time of single bubbles in a gassed oscillatory baffled column: effect of oscillation amplitude. Journal of Chemical Technology and Biotechnology, 2003, 78, 220-226.	3.2	6
42	Production of pullulan using an oscillatory baffled bioreactor. Journal of Chemical Technology and Biotechnology, 2003, 78, 260-264.	3.2	17
43	On modelling turbulent flow in an oscillatory baffled column - RANS model or large-eddy simulation?. Journal of Chemical Technology and Biotechnology, 2003, 78, 321-325.	3.2	7
44	Population balance modelling of droplets in an oscillatory baffled reactor?using direct measurements of breakage rate constants. Journal of Chemical Technology and Biotechnology, 2003, 78, 364-369.	3.2	7
45	Polymer product engineering utilising oscillatory baffled reactors. Powder Technology, 2002, 124, 281-286.	4.2	19
46	On the effect of tracer density on axial dispersion in a batch oscillatory baffled column. Chemical Engineering Journal, 2002, 85, 17-25.	12.7	14
47	Kinetics of enzymatic solid-to-solid peptide synthesis: Synthesis ofZ-aspartame and control of acid-base conditions by using inorganic salts. Biotechnology and Bioengineering, 2001, 72, 69-76.	3.3	28
48	Scaleâ€up of single phase axial dispersion coefficients in batch and continuous oscillatory baffled tubes. Canadian Journal of Chemical Engineering, 2001, 79, 444-448.	1.7	29
49	Droplet size distribution in a continuous oscillatory baffled reactor. Chemical Engineering Science, 2001, 56, 735-739.	3.8	26
50	Parameters affecting fluid dispersion in a continuous oscillatory baffled tube. AICHE Journal, 2000, 46, 37-45.	3.6	46
51	Flow patterns and oil—water dispersion in a 0.38 m diameter oscillatory baffled column. Canadian Journal of Chemical Engineering, 2000, 78, 211-220.	1.7	5
52	On the effect of gap size between baffle outer diameter and tube inner diameter on the mixing characteristics in an oscillatory-baffled column. Journal of Chemical Technology and Biotechnology, 1999, 74, 587-593.	3.2	18
53	Kinetics of enzymatic solid-to-solid peptide synthesis: Intersubstrate compound, substrate ratio, and mixing effects. , 1999, 63, 316-321.		30
54	Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis. , 1998, 59, 68-72.		40

XIONG-WEI NI

#	Article	IF	CITATIONS
55	Experimental Flow Visualisation in a Modified Pulsed Baffled Reactor. Journal of Chemical Technology and Biotechnology, 1997, 69, 321-328.	3.2	21
56	On the Effect of Surfactant on Mass Transfer to Water-Glycerol Solutions in a Pulsed Baffled Reactor. Journal of Chemical Technology and Biotechnology, 1997, 69, 247-253.	3.2	14
57	A Study of Oil-Water Dispersion in a Pulsed Baffled Reactor. Journal of Chemical Technology and Biotechnology, 1996, 66, 305-311.	3.2	11
58	Mass transfer characteristics of a pilot pulsed baffled reactor. Journal of Chemical Technology and Biotechnology, 1996, 65, 65-71.	3.2	27
59	A study of mass transfer in yeast in a pulsed baffled bioreactor. Biotechnology and Bioengineering, 1995, 45, 165-175.	3.3	48
60	Residence time distribution measurements in a pulsed baffled tube bundle. Journal of Chemical Technology and Biotechnology, 1994, 59, 213-221.	3.2	25