
Grzegorz Lota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy and Environmental Science, 2012, 5, 5842-5850.	15.6	695
2	Carbon nanotubes and their composites in electrochemical applications. Energy and Environmental Science, 2011, 4, 1592.	15.6	535
3	Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50, 2799-2805.	2.6	399
4	Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta, 2004, 49, 515-523.	2.6	396
5	Effect of nitrogen in carbon electrode on the supercapacitor performance. Chemical Physics Letters, 2005, 404, 53-58.	1.2	334
6	Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta, 2006, 51, 2209-2214.	2.6	308
7	Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta, 2005, 50, 1197-1206.	2.6	300
8	A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends. Advanced Materials, 2005, 17, 2380-2384.	11.1	298
9	Striking capacitance of carbon/iodide interface. Electrochemistry Communications, 2009, 11, 87-90.	2.3	248
10	Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochemistry Communications, 2007, 9, 1828-1832.	2.3	239
11	Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochimica Acta, 2008, 53, 2210-2216.	2.6	222
12	Room-temperature phosphonium ionic liquids for supercapacitor application. Applied Physics Letters, 2005, 86, 164104.	1.5	169
13	Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochemistry Communications, 2011, 13, 38-41.	2.3	166
14	Electrochemistry Serving People and Nature: Highâ€Energy Ecocapacitors based on Redoxâ€Active Electrolytes. ChemSusChem, 2012, 5, 1181-1185.	3.6	148
15	Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell. Electrochemistry Communications, 2006, 8, 129-132.	2.3	123
16	Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Applied Catalysis B: Environmental, 2021, 288, 120037.	10.8	108
17	Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants. Electrochimica Acta, 2010, 55, 7484-7488.	2.6	97
18	Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochimica Acta, 2012, 86, 282-286.	2.6	97

#	Article	IF	CITATIONS
19	Carbon materials modified by plasma treatment as electrodes for supercapacitors. Journal of Power Sources, 2010, 195, 7535-7539.	4.0	73
20	Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. Journal of Power Sources, 2007, 171, 546-551.	4.0	71
21	Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Advances, 2015, 5, 79031-79040.	1.7	71
22	Hybrid materials for supercapacitor application. Journal of Solid State Electrochemistry, 2010, 14, 811-816.	1.2	70
23	Synthesis and Properties of Trigeminal Tricationic Ionic Liquids. Chemistry - A European Journal, 2007, 13, 3106-3112.	1.7	67
24	The application of activated carbon modified by ozone treatment for energy storage. Journal of Solid State Electrochemistry, 2016, 20, 2857-2864.	1.2	61
25	The effect of lignosulfonates as electrolyte additives on the electrochemical performance of supercapacitors. Electrochemistry Communications, 2011, 13, 470-473.	2.3	57
26	Supercapacitors Based on Nickel Oxide/Carbon Materials Composites. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	55
27	Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Advances, 2014, 4, 61743-61752.	1.7	53
28	Anti-corrosive properties of silane coatings deposited on anodised aluminium. Electrochimica Acta, 2016, 220, 1-10.	2.6	53
29	The influence of current collector corrosion on the performance of electrochemical capacitors. Journal of Power Sources, 2017, 368, 18-29.	4.0	52
30	Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications. Nano Research, 2018, 11, 4199-4214.	5.8	51
31	Effect of surfactants on capacitance properties of carbon electrodes. Electrochimica Acta, 2012, 60, 206-212.	2.6	45
32	Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage, 2021, 43, 103226.	3.9	45
33	High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chemical Physics Letters, 2007, 434, 73-77.	1.2	43
34	Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors. Journal of Power Sources, 2014, 255, 230-234.	4.0	40
35	Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device. Journal of Power Sources, 2015, 293, 42-50.	4.0	40
36	Carbon/polypyrrole composites for electrochemical capacitors. Synthetic Metals, 2015, 203, 44-48.	2.1	36

#	Article	IF	CITATIONS
37	Boronâ€Doped Polygonal Carbon Nanoâ€Onions: Synthesis and Applications in Electrochemical Energy Storage. Chemistry - A European Journal, 2017, 23, 7132-7141.	1.7	36
38	The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors. Materials Letters, 2016, 173, 72-75.	1.3	31
39	Pseudocapacitance Effects for Enhancement of Capacitor Performance. Fuel Cells, 2010, 10, 848-855.	1.5	30
40	Improvement of the Structural and Chemical Properties of Carbon Nanoâ€onions for Electrocatalysis. ChemNanoMat, 2017, 3, 583-590.	1.5	24
41	Nickel Coatings Electrodeposited from Watts Type Baths Containing Quaternary Ammonium Sulphate Salts. International Journal of Electrochemical Science, 2017, 12, 3350-3360.	0.5	24
42	Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes. Electrochimica Acta, 2013, 98, 94-103.	2.6	22
43	Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment. Environmental Technology (United Kingdom), 2017, 38, 1093-1099.	1.2	22
44	The impact of solvents on the singlet and triplet states of selected fluorine corroles – absorption, fluorescence, and optoacoustic studies. Physical Chemistry Chemical Physics, 2016, 18, 7216-7228.	1.3	20
45	Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Current Applied Physics, 2017, 17, 66-71.	1.1	20
46	The modified activated carbon treated with a low-temperature iodine plasma used as electrode material for electrochemical capacitors. Materials Letters, 2016, 175, 96-100.	1.3	18
47	Anti–corrosive siloxane coatings for improved long–term performance of supercapacitors with an aqueous electrolyte. Electrochimica Acta, 2021, 372, 137840.	2.6	18
48	Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode. Journal of Power Sources, 2010, 195, 7511-7516.	4.0	17
49	Positive electrode material in lead-acid car battery modified by protic ammonium ionic liquid. Journal of Energy Storage, 2019, 26, 100996.	3.9	17
50	lonogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties. Polymer, 2019, 160, 272-281.	1.8	17
51	Enhancing the performance of polypyrrole composites as electrode materials for supercapacitors by carbon nanotubes additives. Journal of Applied Polymer Science, 2020, 137, 48867.	1.3	17
52	Taguchi method in experimental procedures focused on corrosion process of positive current collector in lithium-ion batteries. Electrochimica Acta, 2020, 360, 137011.	2.6	17
53	Polysulphides reversible faradaic reactions in supercapacitor application. Electrochemistry Communications, 2016, 68, 28-31.	2.3	16
54	Carbon Fiber and Nickel Coated Carbon Fiber–Silica Aerogel Nanocomposite as Low-Frequency Microwave Absorbing Materials. Materials, 2020, 13, 400.	1.3	16

#	Article	IF	CITATIONS
55	Electrochemical properties of positive electrode in lead-acid battery modified by ammonium-based ionic liquids. Journal of Solid State Electrochemistry, 2018, 22, 919-930.	1.2	15
56	Electrocatalytic properties of a cerium/nickel coating deposited using a deep eutectic solvent. Electrochemistry Communications, 2019, 107, 106538.	2.3	14
57	Electrochemical Capacitors Based on Electrodes Made of Lignocellulosic Waste Materials. Waste and Biomass Valorization, 2020, 11, 3863-3871.	1.8	13
58	Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode. Sustainable Energy and Fuels, 2021, 5, 4401-4413.	2.5	13
59	Electrochemical supercapacitor with thiourea-based aqueous electrolyte. Electrochemistry Communications, 2018, 97, 32-36.	2.3	12
60	Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. Chemosphere, 2022, 304, 135381.	4.2	12
61	Diffusion dialysis and extraction integrated system for recovery of cobalt(II) from industrial effluent. Journal of Water Process Engineering, 2021, 39, 101754.	2.6	11
62	Hybrid electrochemical and biological treatment of herbicidal ionic liquids comprising the MCPA anion. Ecotoxicology and Environmental Safety, 2019, 181, 172-179.	2.9	10
63	Electrochemical properties of modified negative electrode for Ni-MH cell. Current Applied Physics, 2020, 20, 106-113.	1.1	10
64	Correlation of hydrogen capacity in carbon material with the parameters of electrosorption. Open Chemistry, 2011, 9, 20-24.	1.0	9
65	Corrosion-protective coatings based on fluorocarbosilane. Progress in Organic Coatings, 2018, 123, 374-383.	1.9	9
66	Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation. Journal of Alloys and Compounds, 2020, 829, 154553.	2.8	9
67	Control of hydrogen release during borohydride electrooxidation with porous carbon materials. RSC Advances, 2021, 11, 15639-15655.	1.7	9
68	Lithium insertion/deinsertion of boron doped graphitic carbons synthesized by different procedure. Journal of Physics and Chemistry of Solids, 2008, 69, 1179-1181.	1.9	8
69	Corrosion Protection of Stainless Steel by Triethoxyoctylsilane and Tetraethoxysilane. International Journal of Electrochemical Science, 2016, 11, 8256-8269.	0.5	8
70	Persulfate treatment as a method of modifying carbon electrode material for aqueous electrochemical capacitors. Journal of Solid State Electrochemistry, 2017, 21, 1079-1088.	1.2	8
71	The Effect of the Substituent Length in Protic Ionic Liquid Additive on the Corrosion Process in the Leadâ^'Acid Battery. International Journal of Electrochemical Science, 2018, 13, 4390-4400.	0.5	7
72	Long hain Ionic Liquids Based on Monoquaternary DABCO Cations and TFSI Anions: Towards Stable Electrolytes for Electrochemical Capacitors. ChemPlusChem, 2020, 85, 2679-2688.	1.3	7

#	Article	IF	CITATIONS
73	Ni–La composite coating obtained using deep eutectic solvent and its electrocatalytic activity. Chemical Papers, 2020, 74, 1691-1696.	1.0	6
74	Mixed Diffusionâ€Kinetic Control of H ₂ O ₂ Oxidation at an Oxide overed Platinum Electrode in Alkaline Electrolyte: Implications for Oxygen Electroreduction Studies with a Rotating Ring Disk Electrode. ChemElectroChem, 2021, 8, 839-849.	1.7	6
75	Ozonation with ammoxidation as a method of obtaining O, N-doped carbon electrode material to electrochemical capacitors. Electrochimica Acta, 2022, 413, 140130.	2.6	6
76	Limiting ac frequency and dc current of electrochemical double layer capacitors. Journal of Power Sources, 2015, 280, 289-292.	4.0	5
77	The Rapeseed Oil Based Organofunctional Silane for Stainless Steel Protective Coatings. Materials, 2020, 13, 2212.	1.3	5
78	Synthesis and electrochemical properties of carbon nanotubes obtained by pyrolysis of acetylene using AB5 alloy. Journal of Solid State Electrochemistry, 2010, 14, 2209-2212.	1.2	4
79	The modification of anode material for direct borohydride fuel cell. Ionics, 2016, 22, 2539-2544.	1.2	4
80	The Influence of Carbon Material Modification on The Pseudocapacitive Effect. Materials Today: Proceedings, 2019, 6, 36-41.	0.9	4
81	Lignin-based dual component additives as effective electrode material for energy management systems. International Journal of Biological Macromolecules, 2020, 165, 268-278.	3.6	4
82	lonic Liquid Modified Electrochemical Capacitor with Longâ€Term Performance. ChemElectroChem, 2021, 8, 3685-3694.	1.7	4
83	Quinone/hydroquinone redox couple as a source of enormous capacitance of activated carbon electrodes. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	3
84	Effect of Alkyltrimethylammonium Ions on Corrosion and Electrochemical Behavior of Pb-Ca-Sn Alloy. International Journal of Electrochemical Science, 2018, 13, 11058-11073.	0.5	3
85	Effect of surfactants on capacitance properties of carbon electrodes. Materials Research Society Symposia Proceedings, 2011, 1333, 110701.	0.1	2
86	Graphene and Graphene Composites in Electrochemical Capacitors and Li-Ion Batteries. ECS Transactions, 2015, 70, 27-36.	0.3	2
87	Highly anti–corrosive treatment of low–carbon steel. Ceramics International, 2021, 47, 24770-24770.	2.3	1
88	Zastosowanie kompozytowych materiaÅ,ów polimerowo-metalicznych jako materiaÅ,u elektrodowego w ogniwach niklowo-metalowodorkowych. Przemysl Chemiczny, 2017, 1, 26-29.	0.0	1
89	WpÅ,yw dodatku polimerowych cieczy jonowych na wÅ,aÅ›ciwoÅ›ci korozyjne akumulatora kwasowo-oÅ,owiowego. Przemysl Chemiczny, 2017, 1, 22-25.	0.0	0
90	Kondensator asymetryczny typu C/MnO2. Przemysl Chemiczny, 2017, 1, 46-49.	0.0	0

#	Article	IF	CITATIONS
91	Ciecze jonowe jako dodatek do masy elektrodowej akumulatorów kwasowo-oÅ,owiowych. Przemysl Chemiczny, 2017, 1, 18-21.	0.0	0
92	WpÅ,yw dodatków wÄ™glowych na pojemność elektrod typu AB5. Przemysl Chemiczny, 2017, 1, 40-44.	0.0	0
93	MożliwoÅ›ci ograniczenia korozji stopów oÅ,owiu w akumulatorze kwasowo-oÅ,owiowym poprzez zastosowanie dodatku cieczy jonowych. Ochrona Przed Korozja, 2018, 1, 4-9.	0.1	0
94	Materials under research: Nanomaterials, aerogels, biomaterials, composites, inks. , 2022, , 3-31.		0
95	(Invited) Influence of Current Collector on the Long-Term Performance of Electrochemical Capacitors. ECS Meeting Abstracts, 2020, MA2020-02, 612-612.	0.0	0
96	Capacitor lifetime prolonged by addition of organic ammonium salt with cyclohexyl substituent and 2,5-dihydroxybenzenesulfonic anion. Electrochemistry Communications, 2022, 140, 107326.	2.3	0