
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indirect cytotoxicity evaluations of antibacterial raw silk fabric doped with calcium, copper and zinc on fibroblasts and osteoblasts. Journal of Biomaterials Applications, 2022, , 088532822110589.	1.2	1
2	Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105122.	1.5	9
3	Fluorescent properties of octacalcium phosphate with incorporated isophthalate ions. Journal of the Ceramic Society of Japan, 2022, 130, 337-340.	0.5	5
4	Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca ₁₈ Zn ₂ (HPO ₄) ₂ (PO ₄) ₁₂) synthesized <i>via</i> a phase transformation process under hydrothermal conditions. CrystEngComm, 2022, 24, 5068-5079.	1.3	6
5	Octacalcium phosphate with incorporated carboxylate ions: a review. Science and Technology of Advanced Materials, 2022, 23, 434-445.	2.8	9
6	Fabrication and evaluation of ascorbic acid phosphate-loaded spherical porous hydroxyapatite/octacalcium phosphate granules. Journal of the Ceramic Society of Japan, 2021, 129, 60-65.	0.5	4
7	Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Communications Chemistry, 2021, 4, .	2.0	19
8	Proteomic identification of serum proteins to induce osteoconductivity of hydroxyapatite. Dental Materials Journal, 2021, 40, 1428-1436.	0.8	2
9	COMPREHENSIVE INVESTIGATION OF PHASE FORMATION MECHANISM AND PHYSICO-MECHANICAL PROPERTIES OF Ca-Mg-SILICATE. ASEAN Engineering Journal, 2021, 11, 37-50.	0.2	4
10	Cytotoxicity evaluation of iron nitride nanoparticles for biomedical applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 1784-1791.	2.1	5
11	Time Transient of Calcium and Phosphate Ion Adsorption by Rutile Crystal Facets in Hanks' Solution Characterized by XPS. Langmuir, 2021, 37, 3597-3604.	1.6	11
12	Fibronectin adsorption on carbonate-containing hydroxyapatite. Ceramics International, 2021, 47, 11769-11776.	2.3	6
13	In-vitro heat-generating and apatite-forming abilities of PMMA bone cement containing TiO2 and Fe3O4. Ceramics International, 2021, 47, 12292-12299.	2.3	14
14	Understanding the Steric Structures of Dicarboxylate Ions Incorporated in Octacalcium Phosphate Crystals. Materials, 2021, 14, 2703.	1.3	5
15	Hydrothermal synthesis and preliminary cytotoxicity assessment of gadolinium borate nanoparticles for neutron capture therapy. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	3
16	Antibacterial properties of Cu-doped TiO ₂ prepared by chemical and heat treatment of Ti metal. Journal of Asian Ceramic Societies, 2021, 9, 1448-1456.	1.0	7
17	Visible lightâ€induced photocatalytic and antibacterial activity of Nâ€doped TiO ₂ . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 451-459.	1.6	37
18	Setting behaviour, mechanical properties and heat generation under alternate current magnetic fields of Fe ₃ O ₄ /TiO ₂ /PMMA composite bone cement. Medical Devices & Sensors, 2020, 3, e10114.	2.7	6

#	Article	IF	CITATIONS
19	Structural control of magnetite nanoparticles for hyperthermia by modification with organic polymers: effect of molecular weight. RSC Advances, 2020, 10, 26374-26380.	1.7	4
20	Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bulletin of the Chemical Society of Japan, 2020, 93, 701-707.	2.0	18
21	Enhanced sinterability and in vitro bioactivity of barium-doped akermanite ceramic. Ceramics International, 2020, 46, 19062-19068.	2.3	14
22	Apatite formation and bacterial growth on raw silk fabric heated in argon gas. Journal of Materials Science: Materials in Medicine, 2020, 31, 49.	1.7	3
23	In vitro evaluation of doxorubicin-eluting porous titania microspheres for transcatheter arterial chemoembolization. Journal of Asian Ceramic Societies, 2020, 8, 10-20.	1.0	1
24	Behaviour of calcium phosphate ester salts in a simulated body fluid modified with alkaline phosphatase: a new concept of ceramic biomaterials. Materials Advances, 2020, 1, 3215-3220.	2.6	3
25	Synthesis of iron nitride nanoparticles from magnetite nanoparticles of different sizes for application to magnetic hyperthermia. Ceramics International, 2019, 45, 23707-23714.	2.3	11
26	Evaluation of Apatite-Forming Ability and Antibacterial Activity of Raw Silk Fabrics Doped with Metal Ions. Materials Transactions, 2019, 60, 808-814.	0.4	3
27	In vitro apatite mineralization and heat generation of magnetite-reduced graphene oxide nanocomposites for hyperthermia treatment. Materials Science and Engineering C, 2019, 99, 68-72.	3.8	10
28	In situ synthesis of magnetic iron oxide nanoparticles in chitosan hydrogels as a reaction field: Effect of cross-linking density. Colloids and Surfaces B: Biointerfaces, 2019, 179, 334-339.	2.5	20
29	Biological Functions of Ceramics. , 2019, , 119-131.		0
30	Development and evaluation of the properties of functional ceramic microspheres for biomedical applications. Journal of the Ceramic Society of Japan, 2018, 126, 1-7.	0.5	4
31	Effects of Milling Speed and Sintering on the Formation of Akermanite (Ca ₂ MgSi ₂ O ₇) Bioceramics. Journal of Physics: Conference Series, 2018, 1082, 012074.	0.3	0
32	Surface Roughness, Hydrophilicity and Encapsulation Efficiency of Gentamicin Loaded Surface Engineered PLA Microspheres. Journal of Physics: Conference Series, 2018, 1082, 012068.	0.3	1
33	Surface structure and in vitro apatite-forming ability of titanium doped with various metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 558-564.	2.3	9
34	Microparticles Preparation Using Water-in-Oil Emulsion. , 2018, , 453-481.		1
35	Evaluation of Apatite-forming Ability and Antibacterial Activity of Raw Silk Fabrics Doped with Metal Ions. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 495-501.	0.1	0
36	Hierarchical bioceramic scaffold for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 877-890.	1.8	6

#	Article	IF	CITATIONS
37	Bioactive Glass-Ceramics. , 2017, , 213-237.		1
38	TiO ₂ microspheres containing magnetic nanoparticles for intraâ€arterial hyperthermia. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2308-2314.	1.6	7
39	Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treatedÂtitanium. Bio-Medical Materials and Engineering, 2017, 29, 109-118.	0.4	1
40	Fibronectin adsorption on osteoconductive hydroxyapatite and non-osteoconductive $\hat{I}\pm$ -alumina. Biomedical Materials (Bristol), 2016, 11, 045006.	1.7	9
41	Adsorption of Laminin on Hydroxyapatite and Alumina and the MC3T3-E1 Cell Response. ACS Biomaterials Science and Engineering, 2016, 2, 1162-1168.	2.6	15
42	Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor. Journal of Materials Science: Materials in Medicine, 2016, 27, 93.	1.7	16
43	Ceramic-Polymer Composites for Biomedical Applications. , 2016, , 287-300.		1
44	Formation of bioactive N-doped TiO2 on Ti with visible light-induced antibacterial activity using NaOH, hot water, and subsequent ammonia atmospheric heat treatment. Colloids and Surfaces B: Biointerfaces, 2016, 145, 285-290.	2.5	21
45	Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina. Materials Science and Engineering C, 2016, 69, 1268-1272.	3.8	11
46	Structures of organic additives modified magnetite nanoparticles. Ceramics International, 2016, 42, 6000-6004.	2.3	13
47	Microparticles Preparation Using Water-in-Oil Emulsion. , 2016, , 1-29.		0
48	Calcium phosphate-forming ability of magnetite and related materials in a solution mimicking in vivo conditions. Journal of Asian Ceramic Societies, 2015, 3, 44-49.	1.0	10
49	In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol–gel processing with different SiO2 nanoparticle contents. Materials Science and Engineering C, 2015, 50, 317-323.	3.8	15
50	Sol–gel synthesis of magnetic TiO2 microspheres and characterization of their in vitro heating ability for hyperthermia treatment of cancer. Journal of Sol-Gel Science and Technology, 2015, 75, 90-97.	1.1	17
51	Effects of Mild Alkali Pretreatment and Hydrogen-Donating Solvent on Hydrothermal Liquefaction of Eucalyptus Woodchips. Energy & Fuels, 2015, 29, 7335-7342.	2.5	8
52	Ceramic-Polymer Composites for Biomedical Applications. , 2015, , 1-12.		2
53	MC3T3â€E1 and RAW264.7 cell response to hydroxyapatite and alphaâ€ŧype alumina adsorbed with bovine serum albumin. Journal of Biomedical Materials Research - Part A, 2014, 102, 1880-1886.	2.1	17
54	Adsorption characteristics of bovine serum albumin onto alumina with a specific crystalline structure. Journal of Materials Science: Materials in Medicine, 2014, 25, 453-459.	1.7	8

#	Article	IF	CITATIONS
55	Effects of organic polymer addition in magnetite synthesis on the crystalline structure. RSC Advances, 2014, 4, 23359-23363.	1.7	16
56	Yttrium phosphate microspheres with enriched phosphorus content prepared for radiotherapy of deep-seated cancer. Ceramics International, 2014, 40, 15259-15263.	2.3	3
57	Bisphosphonate release profiles from magnetite microspheres. Journal of Biomaterials Applications, 2014, 29, 543-547.	1.2	4
58	In vitro apatite formation and visible-light photocatalytic activity of Ti metal subjected to chemical and thermal treatments. Ceramics International, 2014, 40, 12629-12636.	2.3	6
59	Title is missing!. Journal of Medical and Biological Engineering, 2014, 34, 14.	1.0	9
60	W021003 Biomedical Materials to Assist Cancer Therapy. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _W021003-1W021003-4.	0.0	0
61	Effect of ammonia or nitric acid treatment on surface structure, in vitro apatite formation, and visible-light photocatalytic activity of bioactive titanium metal. Colloids and Surfaces B: Biointerfaces, 2013, 111, 503-508.	2.5	5
62	Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels. Journal of Crystal Growth, 2013, 383, 166-171.	0.7	12
63	Biomimetic mineralization of calcium phosphates in polymeric hydrogels containing carboxyl groups. Journal of Asian Ceramic Societies, 2013, 1, 155-162.	1.0	24
64	Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia. Journal of Materials Science: Materials in Medicine, 2013, 24, 1125-1129.	1.7	16
65	Magnetite fine particles highly loaded PMMA microspheres for hyperthermia of deep-seated cancer. Journal of the Ceramic Society of Japan, 2013, 121, 802-806.	0.5	3
66	Preparation and in vitro apatite-forming ability of porous and non-porous titania microspheres. Journal of the Ceramic Society of Japan, 2013, 121, 782-787.	0.5	6
67	Design of Biomedical Materials for Treatment of Cancer and Bone Diseases. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 503-509.	0.1	0
68	Formation of organically modified octacalcium phosphate in solutions containing various amounts of benzenedicarboxylic acids. Journal of the Ceramic Society of Japan, 2013, 121, 219-225.	0.5	21
69	Behavior of hydroxyapatite crystals in a simulated body fluid: effects of crystal face. Journal of the Ceramic Society of Japan, 2013, 121, 807-812.	0.5	23
70	Effect of Autoclave and Hot Water Treatments on Surface Structure and <i>In Vitro</i> Apatite-Forming Ability of NaOH- and Heat-Treated Bioactive Titanium Metal. Materials Transactions, 2013, 54, 811-816.	0.4	13
71	Formation of octacalcium phosphates with co-incorporated succinate and suberate ions. Dalton Transactions, 2012, 41, 2732.	1.6	18
72	Sol–gel synthesis, characterization, and in vitro compatibility of iron nanoparticle-encapsulating silica microspheres for hyperthermia in cancer therapy. Journal of Materials Science: Materials in Medicine, 2012, 23, 2461-2469.	1.7	18

#	Article	IF	CITATIONS
73	Zeta potential of alumina powders with different crystalline phases in simulated body fluids. Materials Science and Engineering C, 2012, 32, 2617-2622.	3.8	16
74	<i>In vitro</i> assessment of poly(methylmethacrylate)â€based bone cement containing magnetite nanoparticles for hyperthermia treatment of bone tumor. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2537-2545.	2.1	25
75	Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glassâ€eeramic fillers. Journal of Applied Polymer Science, 2012, 125, E661.	1.3	26
76	Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. Journal of Materials Science: Materials in Medicine, 2012, 23, 1355-1362.	1.7	6
77	Synthesis of octacalcium phosphate with incorporated succinate and suberate ions. Ceramics International, 2012, 38, 3815-3820.	2.3	19
78	Preparation of ferromagnetic microcapsules for hyperthermia using water/oil emulsion as a reaction field. Materials Science and Engineering C, 2012, 32, 692-696.	3.8	20
79	COMPARISON OF ADSORPTION BEHAVIOR OF BOVINE SERUM ALBUMIN AND OSTEOPONTIN ON HYDROXYAPATITE AND ALUMINA. Phosphorus Research Bulletin, 2012, 26, 23-28.	0.1	7
80	Preparation of Magnetic Iron Oxide Nanoparticles for Hyperthermia of Cancer in a FeCl2-NaNO3-NaOH Aqueous System. Journal of Biomaterials Applications, 2011, 25, 643-661.	1.2	35
81	Novel Synthesis of Yttrium Phosphate Microspheres for Radioembolization of Cancer. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192003.	0.3	7
82	Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192005.	0.3	0
83	Effects of Monocarboxylic Acid Addition on Crystallization of Calcium Phosphate in a Hydrogel Matrix. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192012.	0.3	4
84	New bioactive glass-ceramic: Synthesis and application in PMMA bone cement composites. Bio-Medical Materials and Engineering, 2011, 21, 247-258.	0.4	19
85	Current progress in inorganic artificial biomaterials. Journal of Artificial Organs, 2011, 14, 163-170.	0.4	92
86	Preparation, structure, and <i>in vitro</i> chemical durability of yttrium phosphate microspheres for intraâ€arterial radiotherapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 45-50.	1.6	17
87	Sol-gel synthesis and characterization of magnetic TiO2 microspheres. Journal of the Ceramic Society of Japan, 2010, 118, 467-473.	0.5	18
88	Formation of octacalcium phosphate with incorporated succinic acid through gel-mediated processing. Journal of the Ceramic Society of Japan, 2010, 118, 491-497.	0.5	13
89	Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. Journal of the Ceramic Society of Japan, 2010, 118, 479-482.	0.5	15
90	Apatite formation on anodized Ti-6Al-4V alloy in simulated body fluid. Metals and Materials International, 2010, 16, 407-412.	1.8	11

#	Article	IF	CITATIONS
91	Preparation of porous yttrium oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium ions. Journal of Materials Science: Materials in Medicine, 2010, 21, 1837-1843.	1.7	13
92	Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions. Journal of Crystal Growth, 2010, 312, 2376-2382.	0.7	20
93	Biomimetic mineralization of calcium phosphate crystals in polyacrylamide hydrogel: Effect of concentrations of calcium and phosphate ions on crystalline phases and morphology. Materials Science and Engineering C, 2010, 30, 154-159.	3.8	39
94	Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering C, 2010, 30, 990-996.	3.8	149
95	PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Acta Biomaterialia, 2010, 6, 3187-3192.	4.1	62
96	Magnetic SiO ₂ gel microspheres for arterial embolization hyperthermia. Biomedical Materials (Bristol), 2010, 5, 065010.	1.7	17
97	0510 Synthesis of ceramic microspheres for local treatment of deep-seated cancer. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 84.	0.0	0
98	Electrodeposition of apatite onto titanium substrates under pulse current. , 2010, , 305-307.		0
99	Synthesis of calcium phosphate crystals in a silica hydrogel containing phosphate ions. Journal of Materials Research, 2009, 24, 2154-2160.	1.2	17
100	Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental Materials, 2009, 25, 80-86.	1.6	187
101	Biomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 239-247.	1.6	15
102	Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 155-159.	1.7	0
103	Induction of bioactivity on silicone elastomer by simultaneous irradiation of oxygen cluster and monomer ion beams. Acta Biomaterialia, 2009, 5, 621-627.	4.1	3
104	Preparation of Size-Controlled Magnetite Nanoparticles for Hyperthermia of Cancer. Transactions of the Materials Research Society of Japan, 2009, 34, 77-80.	0.2	7
105	Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomaterialia, 2008, 4, 1349-1359.	4.1	69
106	PET fiber fabrics modified with bioactive titanium oxide for bone substitutes. Journal of Materials Science: Materials in Medicine, 2008, 19, 695-702.	1.7	17
107	Apatite formation on titanium substrates by electrochemical deposition in metastable calcium phosphate solution. Journal of Materials Science: Materials in Medicine, 2008, 19, 137-142.	1.7	12
108	In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field. Journal of Materials Science: Materials in Medicine, 2008, 19, 1897-1903.	1.7	42

#	Article	IF	CITATIONS
109	Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions. Journal of Materials Science: Materials in Medicine, 2008, 19, 1767-1773.	1.7	31
110	Photocatalytic properties of Cr-doped TiO2 films prepared by oxygen cluster ion beam assisted deposition. Vacuum, 2008, 83, 679-682.	1.6	25
111	Angular dependence of sputtering effects by ethanol cluster ion irradiation on solid surfaces. Vacuum, 2008, 83, 459-462.	1.6	3
112	Interactions of Water Cluster Ion Beams with Solid Surfaces. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 111-117.	0.6	3
113	Physical and chemical sputterings of solid surfaces irradiated by ethanol cluster ion beams. Review of Scientific Instruments, 2008, 79, 02C503.	0.6	2
114	Dependence of size distribution for liquid cluster ions on retarding voltage. Review of Scientific Instruments, 2008, 79, 02B305.	0.6	0
115	Effect of pulse current on structure and adhesion of apatite electrochemically deposited onto titanium substrates. Journal of Materials Research, 2008, 23, 3176-3183.	1.2	5
116	Preparation of bioactive Ti and its alloys via electrochemical treatment in sulfuric acid solution. Journal of the Ceramic Society of Japan, 2008, 116, 329-333.	0.5	2
117	Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current. Journal of the Ceramic Society of Japan, 2008, 116, 68-73.	0.5	20
118	Irradiation Effects of Methanol Cluster Ion Beams on Solid Surfaces. Materials Research Society Symposia Proceedings, 2007, 1020, 1.	0.1	2
119	In Vitro Apatite Formation on Polymer Substrates Irradiated by the Simultaneous Use of Oxygen Cluster and Monomer Ion Beams. Materials Research Society Symposia Proceedings, 2007, 1020, 1.	0.1	0
120	Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid. Journal of Materials Chemistry, 2007, 17, 4057.	6.7	30
121	Surface structure and apatite-forming ability of polyethylene substrates irradiated by oxygen cluster ion beams. Journal of Biomedical Materials Research - Part A, 2007, 82A, 995-1003.	2.1	10
122	Antibacterial activity of silver-doped silica glass microspheres prepared by a sol-gel method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 114-120.	1.6	23
123	Modification of polyethylene surfaces irradiated by the simultaneous use of cluster and monomer ion beams. Surface and Coatings Technology, 2007, 201, 8242-8245.	2.2	7
124	Irradiation effects of liquid cluster ion beams on silicon surfaces. Surface and Coatings Technology, 2007, 201, 8628-8631.	2.2	2
125	Interactions of liquid cluster ion beams with metal surfaces. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 209-212.	0.6	1
126	Alkaline treatments to render starch-based biodegradable polymers self-mineralizable. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 425-435.	1.3	13

#	Article	IF	CITATIONS
127	Surface modification of organic polymers with bioactive titanium oxide without the aid of a silane-coupling agent. Journal of Materials Science: Materials in Medicine, 2007, 18, 1167-1174.	1.7	17
128	Preparation of bioactive flexible poly(tetramethylene oxide) (PTMO)–CaO–Ta2O5 hybrids. Journal of Materials Science: Materials in Medicine, 2007, 18, 1117-1124.	1.7	7
129	Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer. Journal of Materials Science: Materials in Medicine, 2007, 18, 1923-1930.	1.7	38
130	High-Rate Sputtering and Chemical Modification of Silicon Surfaces Irradiated by Alcohol Cluster Ion Beams. E-Journal of Surface Science and Nanotechnology, 2006, 4, 473-477.	0.1	6
131	Apatite Deposition on Polymer Substrates Irradiated by Oxygen Cluster Ion Beams. Journal of the Ceramic Society of Japan, 2006, 114, 77-81.	1.3	8
132	Size analysis of water cluster ions and their irradiation effects on solid surfaces. Surface and Interface Analysis, 2006, 38, 1534-1538.	0.8	7
133	Enzymatic Preparation of Hollow Yttrium Oxide Microspheres for In Situ Radiotherapy of Deep-Seated Cancer. Journal of the American Ceramic Society, 2006, 89, 1347-1351.	1.9	31
134	Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution. Biomaterials, 2006, 27, 1704-1710.	5.7	41
135	Interactions of ethanol cluster ion beams with silicon surfaces. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 417-420.	0.6	5
136	Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer. Journal of Materials Science: Materials in Medicine, 2006, 17, 605-610.	1.7	17
137	Characterization of liquid cluster ion source by the time-of-flight method. Review of Scientific Instruments, 2006, 77, 03B509.	0.6	1
138	Surface cleaning and modification of Si(100) substrates by ethanol and water cluster ion beams. Review of Scientific Instruments, 2006, 77, 03B508.	0.6	2
139	Development of polyatomic ion beam system using liquid organic materials. Nuclear Instruments & Methods in Physics Research B, 2005, 237, 240-244.	0.6	1
140	Photocatalytic properties of TiO2 films prepared by O2 cluster ion beam assisted deposition method. Nuclear Instruments & Methods in Physics Research B, 2005, 232, 200-205.	0.6	12
141	Interactions of argon cluster ion beams with silicon surfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 232, 206-211.	0.6	13
142	Fundamental characteristics of liquid cluster ion source for surface modification. Nuclear Instruments & Methods in Physics Research B, 2005, 237, 402-405.	0.6	16
143	Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26, 2231-2238.	5.7	149
144	Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials, 2005, 26, 6496-6505.	5.7	107

#	Article	IF	CITATIONS
145	Ceramic Microspheres for Biomedical Applications. International Journal of Applied Ceramic Technology, 2005, 2, 173-183.	1.1	32
146	Degradation of Bioactive Polydimethylsiloxane-CaO-SiO2-TiO2and Poly(tetramethylene) Tj ETQq0 0 0 rgBT /Ove 235-239.	erlock 10 T 1.9	f 50 707 Td (c 11
147	REVIEW Bioactive metals: preparation and properties. Journal of Materials Science: Materials in Medicine, 2004, 15, 99-107.	1.7	295
148	Apatite-forming ability of alginate fibers treated with calcium hydroxide solution. Journal of Materials Science: Materials in Medicine, 2004, 15, 1007-1012.	1.7	26
149	Apatite-forming ability and mechanical properties of PTMO-modified CaO–SiO2–TiO2 hybrids derived from sol–gel processing. Biomaterials, 2004, 25, 1-7.	5.7	51
150	Mechanical properties of glass-ceramic A–W-polyethylene composites: effect of filler content and particle size. Biomaterials, 2004, 25, 949-955.	5.7	120
151	Apatite formation on non-woven fabric of carboxymethylated chitin in SBF. Biomaterials, 2004, 25, 4485-4488.	5.7	72
152	The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of the Royal Society Interface, 2004, 1, 17-22.	1.5	223
153	Apatite Deposition on Calcium Alginate Fibres in Simulated Body Fluid. Journal of the Ceramic Society of Japan, 2004, 112, 363-367.	1.3	11
154	Preparation of Glass-Ceramics Containing Ferrimagnetic Zinc-Iron Ferrite for the Hyperthermal Treatment of Cancer. Journal of the Ceramic Society of Japan, 2004, 112, 373-379.	1.3	42
155	Precipitation of Anatase in Silicone and Bioactivity of the Products. Journal of the Ceramic Society of Japan, 2004, 112, 594-598.	1.3	4
156	Apatite-forming ability of glass-ceramic apatite-wollastonite - polyethylene composites: effect of filler content. Journal of Materials Science: Materials in Medicine, 2003, 14, 489-495.	1.7	36
157	Apatite formation on CaO-free polydimethylsiloxane (PDMS)-TiO2hybrids. Journal of Materials Science: Materials in Medicine, 2003, 14, 1067-1072.	1.7	17
158	Preparation of antibacterial silver-doped silica glass microspheres. Journal of Biomedical Materials Research Part B, 2003, 66A, 266-274.	3.0	120
159	Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1305-1309.	2.1	159
160	Apatite-forming ability and mechanical properties of CaO-free poly(tetramethylene oxide) (PTMO)–TiO2 hybrids treated with hot water. Biomaterials, 2003, 24, 1357-1363.	5.7	29
161	Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials, 2003, 24, 1729-1735.	5.7	107
162	Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24, 2161-2175.	5.7	1,677

#	Article	IF	CITATIONS
163	Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials, 2003, 24, 2477-2484.	5.7	197
164	Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials, 2003, 24, 2955-2963.	5.7	66
165	Preparation of PTMO-Modified CaO-TiO2 Hybrids via Sol-Gel Processing: Their Apatite-Forming Ability and Mechanical Properties. Journal of the Ceramic Society of Japan, 2003, 111, 555-559.	1.3	5
166	14.1 Ceramics for Biomedical Applications. , 2003, , 385-416.		6
167	Bonelike Apatite Formation on Ethylene-Vinyl Alcohol Copolymer Modified with a Silane Coupling Agent and Titania Solution Journal of the Ceramic Society of Japan, 2002, 110, 248-254.	1.3	50
168	Ceramic microspheres for in situ radiotherapy of cancer. Materials Science and Engineering C, 2002, 22, 3-8.	3.8	13
169	Apatite-forming ability and mechanical properties of PTMO-modified CaO–SiO2 hybrids prepared by sol–gel processing: effect of CaO and PTMO contents. Biomaterials, 2002, 23, 3033-3040.	5.7	64
170	Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents. Journal of Materials Science: Materials in Medicine, 2002, 13, 1015-1020.	1.7	36
171	Effects of Solution on Apatite Formation on Substrate in Biomimetic Process Journal of the Ceramic Society of Japan, 2001, 109, 106-109.	1.3	7
172	Preparation of Magnetite-Containing Glass-Ceramics in Controlled Atmosphere for Hyperthermia of Cancer Journal of the Ceramic Society of Japan, 2001, 109, 39-44.	1.3	25
173	Evaluation of glass microspheres for intra-arterial radiotherapy in animal kidneys. International Journal of Radiation Oncology Biology Physics, 2001, 49, 459-463.	0.4	8
174	Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid: fundamental examination of the possibility of obtaining bioactive glass-ionomer cements for orthopaedic use. Biomaterials, 2001, 22, 3191-3196.	5.7	57
175	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 21, 75-81.	1.1	58
176	Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials, 2000, 21, 393-398.	5.7	413
177	Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation. Journal of Materials Science: Materials in Medicine, 1999, 10, 459-463.	1.7	5
178	Surface structure and chemical durability of P+-implanted Y2O3–Al2O3–SiO2 glass for radiotherapy of cancer. Journal of Non-Crystalline Solids, 1999, 255, 140-148.	1.5	17
179	Phosphorusâ€Implanted Glass for Radiotherapy: Effect of Implantation Energy. Journal of the American Ceramic Society, 1999, 82, 683-688.	1.9	11
180	Preparation of glass for radiotherapy of cancer by P+ ion implantation at 100 keV. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 323-327.	0.6	7

#	Article	IF	CITATIONS
181	Preparation of radiotherapy glass by phosphorus ion implantation at 100 keV. , 1997, 38, 342-347.		3
182	Properties of Silica Glass Implanted with Phosphorus Ion at 50keV for Radiotherapy. Journal of the Ceramic Society of Japan, 1996, 104, 710-714.	1.3	6
183	Preparation of phosphorus-containing silica glass for radiotherapy by co-implantation of phosphorus and nitrogen ions. Journal of Materials Science: Materials in Medicine, 1995, 6, 606-611.	1.7	0
184	Preparation of glasses for radiotherapy by ion implantation. Radiation Physics and Chemistry, 1995, 46, 269-274.	1.4	6
185	MC3T3-E1 Cell Response to Hydroxyapatite and Alpha-Type Alumina Adsorbed with Bovine Serum Albumin. Key Engineering Materials, 0, 529-530, 365-369.	0.4	1
186	Effect of Autoclave and Hot Water Treatment on Surface Structure and Apatite-Forming Ability of NaOH- and Heat-Treated Titanium Metals in Simulated Body Fluid. Key Engineering Materials, 0, 529-530, 570-573.	0.4	0
187	Formation of Oriented Hydroxyapatite Crystals in a Hydrogel. Key Engineering Materials, 0, 529-530, 24-28.	0.4	1
188	Effect of Organic Polymer Addition on the Microstructure of Magnetite-Polymer Hybrid. Key Engineering Materials, 0, 529-530, 453-456.	0.4	0
189	Tailoring Mechanical and <i>In Vitro</i> Biological Properties of Calcium‒Silicate Based Bioceramic Through Iron Doping in Developing Future Material. SSRN Electronic Journal, 0, , .	0.4	1
190	Transformation behaviour of salts composed of calcium ions and phosphate esters with different linear alkyl chain structures in a simulated body fluid modified with alkaline phosphatase. Science and Technology of Advanced Materials, 0, , .	2.8	0