
Zhong-Chun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and tensile properties of in-situ synthesized and hot-extruded aluminum-matrix composites reinforced with hybrid submicron-sized ceramic particles. Journal of Composite Materials, 2022, 56, 1987-2001.	2.4	8
2	Fabrication of aluminum–magnesium clad composites by continuous extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140670.	5.6	15
3	Orientation control of carbon fibers and enhanced thermal/mechanical properties of hot-extruded carbon fibers/aluminum composites. Diamond and Related Materials, 2021, 116, 108432.	3.9	17
4	Fabrication of Bi ₂ Te ₃ -based Bulk Thermoelectric Materials by a Powder Extrusion Technique. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 390-398.	0.2	0
5	Influence of in-situ formed Ba-β-Al2O3 on mechanical properties and thermal shock resistance of ZTA/Ba-β-Al2O3 composites. Ceramics International, 2020, 46, 3738-3743.	4.8	6
6	Processing Optimization and Property Predictions of Hotâ€Extruded Bi–Te–Se Thermoelectric Materials via Machine Learning. Advanced Theory and Simulations, 2020, 3, 1900197.	2.8	10
7	Microstructural evolution of Ti4+-doped calcium hexaaluminate ceramics. Ceramics International, 2020, 46, 12897-12901.	4.8	7
8	Microstructure and thermal properties of nickel-coated carbon fibers/aluminum composites. Journal of Composite Materials, 2020, 54, 2539-2548.	2.4	8
9	Microstructure and thermoelectric properties of higher manganese silicides fabricated via gas atomization and spark plasma sintering. Materials Chemistry and Physics, 2020, 249, 122990.	4.0	6
10	Effect of YSZ with different Y2O3 contents on toughening behavior of Al2O3/Ba-β-Al2O3/ZrO2 composites. Ceramics International, 2019, 45, 18037-18043.	4.8	8
11	Microstructure and thermal/mechanical properties of hot-extruded aluminum/graphite composites with Al–Si alloy addition. Journal of Materials Science, 2019, 54, 9933-9944.	3.7	9
12	Improved Thermoelectric Properties of Hotâ€Extruded Bi–Te–Se Bulk Materials with Cu Doping and Property Predictions via Machine Learning. Advanced Electronic Materials, 2019, 5, 1900079.	5.1	26
13	Effect of Processing Conditions on Microstructure and Thermal Conductivity of Hot-Extruded Aluminum/Graphite Composites. Materials Transactions, 2019, 60, 136-143.	1.2	9
14	Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. Journal of Materials Science, 2018, 53, 9117-9130.	3.7	19
15	Effect of Cu doping on microstructure and thermoelectric properties of Bi2Te2.85Se0.15 bulk materials. Scripta Materialia, 2018, 146, 119-122.	5.2	13
16	Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Materials and Design, 2018, 139, 486-497.	7.0	206
17	Microstructure and improved mechanical properties of Al2O3/Ba-β-Al2O3/ZrO2 composites with YSZ addition. Journal of the European Ceramic Society, 2018, 38, 5113-5121.	5.7	15
18	Microstructure and thermoelectric properties of Bi-Sb-Te bulk materials fabricated from rapidly solidified powders. Scripta Materialia, 2017, 136, 111-114.	5.2	16

ZHONG-CHUN CHEN

#	Article	IF	CITATIONS
19	Microstructure and its influence on thermoelectric properties of hot-extruded Bi-Sb-Te bulk materials. Scripta Materialia, 2017, 141, 89-93.	5.2	12
20	Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. Journal of Alloys and Compounds, 2016, 684, 516-523.	5.5	14
21	Fabrication and Thermoelectric Properties of Cu-doped Bi-Te-Se Bulk Materials. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 613-617.	0.2	5
22	Preparation of a Novel Antiviral Material by Mechanical Milling. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 668-674.	0.2	0
23	Microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. Journal of Alloys and Compounds, 2016, 663, 134-139.	5.5	21
24	Extrusion Behavior and Thermoelectric Properties of Bi2Te2.85Se0.15 Thermoelectric Materials. Procedia Engineering, 2014, 81, 616-621.	1.2	6
25	Fabrication of Zn4Sb3 Bulk Thermoelectric Materials Reinforced with SiC Whiskers. Journal of Electronic Materials, 2014, 43, 2047-2052.	2.2	18
26	Preparation and Characterization of Bi0.4Sb1.6Te3 Bulk Thermoelectric Materials. Journal of Electronic Materials, 2014, 43, 2262-2268.	2.2	20
27	In situ synthesis of alumina-matrix oxide/oxide composites by reactive sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 557, 59-68.	5.6	11
28	Solid-state synthesis and formation mechanism of barium hexaaluminate from mechanically activated Al2O3–BaCO3 powder mixtures. Journal of Alloys and Compounds, 2010, 502, 466-471.	5.5	12
29	Microstructural evolution of reactive-sintered aluminum matrix composites. Composites Science and Technology, 2008, 68, 2245-2253.	7.8	35
30	Interfacial reaction behavior and thermal stability of barium zirconate-coated alumina fiber/alumina matrix composites. Journal of the European Ceramic Society, 2008, 28, 1149-1160.	5.7	13