Eun-Sung Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468467/publications.pdf

Version: 2024-02-01

81743 128067 4,502 120 39 60 citations g-index h-index papers 136 136 136 3158 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 2019, 131, 263-277.	0.9	145
2	Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 2019, 23, 4803-4824.	1.9	142
3	Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmospheric Research, 2018, 213, 149-162.	1.8	134
4	Long-term trends in daily temperature extremes in Iraq. Atmospheric Research, 2017, 198, 97-107.	1.8	128
5	Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. Journal of Environmental Management, 2009, 90, 1502-1511.	3.8	124
6	Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resources, Conservation and Recycling, 2013, 73, 23-32.	5. 3	114
7	Trend Analysis of Droughts during Crop Growing Seasons of Nigeria. Sustainability, 2018, 10, 871.	1.6	102
8	Development of spatial water resources vulnerability index considering climate change impacts. Science of the Total Environment, 2011, 409, 5228-5242.	3.9	101
9	Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability in South Korea. Applied Mathematical Modelling, 2013, 37, 9419-9430.	2.2	99
10	A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Systems With Applications, 2013, 40, 1003-1013.	4.4	93
11	Changing Pattern of Droughts during Cropping Seasons of Bangladesh. Water Resources Management, 2018, 32, 1555-1568.	1.9	93
12	Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmospheric Research, 2019, 223, 60-73.	1.8	91
13	Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmospheric Research, 2021, 254, 105525.	1.8	85
14	Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Natural Hazards and Earth System Sciences, 2013, 13, 1293-1312.	1.5	83
15	Selection of gridded precipitation data for Iraq using compromise programming. Measurement: Journal of the International Measurement Confederation, 2019, 132, 87-98.	2.5	81
16	Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Climate Research, 2017, 74, 95-107.	0.4	81
17	The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed. Hydrological Processes, 2011, 25, 544-560.	1.1	79
18	Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method. Journal of Hydrology, 2019, 573, 281-298.	2.3	77

#	Article	IF	CITATIONS
19	Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models. Atmospheric Research, 2017, 197, 446-460.	1.8	75
20	A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: A case study of Nigeria. Atmospheric Research, 2019, 225, 1-16.	1.8	73
21	Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia. Sustainability, 2019, 11, 4267.	1.6	72
22	Development of streamflow drought severity–duration–frequency curves using the threshold level method. Hydrology and Earth System Sciences, 2014, 18, 3341-3351.	1.9	70
23	Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea. Water Resources Management, 2009, 23, 2395-2416.	1.9	67
24	Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. Journal of Hydrology, 2019, 570, 473-485.	2.3	66
25	Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of longâ€term persistence. Meteorological Applications, 2019, 26, 655-670.	0.9	65
26	Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Scientific Reports, 2020, 10, 10107.	1.6	63
27	Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed. Hydrological Processes, 2007, 21, 3046-3056.	1.1	62
28	Robust spatial flood vulnerability assessment for Han River using fuzzy TOPSIS with \hat{l}_{\pm} -cut level set. Expert Systems With Applications, 2014, 41, 644-654.	4.4	57
29	Uncertainty in Rainfall Intensity Duration Frequency Curves of Peninsular Malaysia under Changing Climate Scenarios. Water (Switzerland), 2018, 10, 1750.	1.2	56
30	Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea. Atmospheric Research, 2021, 247, 105261.	1.8	56
31	Development of integrated watershed management schemes for an intensively urbanized region in Korea. Journal of Hydro-Environment Research, 2007, 1, 95-109.	1.0	51
32	Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios. Journal of Environmental Management, 2014, 146, 505-516.	3.8	51
33	Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 489-500.	1.3	50
34	An index-based robust decision making framework for watershed management in a changing climate. Science of the Total Environment, 2014, 473-474, 88-102.	3.9	49
35	Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives. Journal of Hydrology, 2016, 533, 365-378.	2.3	47
36	Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from <scp>CMIP6</scp> and <scp>CMIP5</scp> general circulation model <scp>s</scp> . International Journal of Climatology, 2021, 41, 5899-5919.	1.5	47

#	Article	IF	Citations
37	Integrated Use of a Continuous Simulation Model and Multi-Attribute Decision-Making for Ranking Urban Watershed Management Alternatives. Water Resources Management, 2011, 25, 641-659.	1.9	46
38	Selection of CMIP5 multi-model ensemble for the projection of spatial and temporal variability of rainfall in peninsular Malaysia. Theoretical and Applied Climatology, 2019, 138, 999-1012.	1.3	45
39	Unidirectional trends in daily rainfall extremes of Iraq. Theoretical and Applied Climatology, 2018, 134, 1165-1177.	1.3	42
40	Assessing climate change vulnerability with group multi-criteria decision making approaches. Climatic Change, 2013, 121, 301-315.	1.7	41
41	Multi-Criteria Assessment of Spatial Robust Water Resource Vulnerability Using the TOPSIS Method Coupled with Objective and Subjective Weights in the Han River Basin. Sustainability, 2017, 9, 29.	1.6	41
42	GCM selection and temperature projection of Nigeria under different RCPs of the CMIP5 GCMS. Theoretical and Applied Climatology, 2020, 141, 1611-1627.	1.3	41
43	Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method. Natural Hazards and Earth System Sciences, 2015, 15, 863-874.	1.5	40
44	Development of high-resolution daily gridded temperature datasets for the central north region of Egypt. Scientific Data, 2019, 6, 138.	2.4	38
45	Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring. Science of the Total Environment, 2021, 753, 142007.	3.9	38
46	Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria. Theoretical and Applied Climatology, 2021, 146, 599-615.	1.3	38
47	Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making. Water Resources Management, 2015, 29, 2543-2561.	1.9	37
48	Prioritization of water management under climate change and urbanization using multi-criteria decision making methods. Hydrology and Earth System Sciences, 2012, 16, 801-814.	1.9	36
49	Effective Design and Planning Specification of Low Impact Development Practices Using Water Management Analysis Module (WMAM): Case of Malaysia. Water (Switzerland), 2017, 9, 173.	1.2	35
50	Development of Climate-Based Index for Hydrologic Hazard Susceptibility. Sustainability, 2018, 10, 2182.	1.6	34
51	Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change. Resources, Conservation and Recycling, 2012, 65, 136-144.	5.3	33
52	Challenges in water resources of Lagos mega city of Nigeria in the context of climate change. Journal of Water and Climate Change, 2020, 11, 1067-1083.	1.2	33
53	Meteorological hazard assessment based on trends and abrupt changes in rainfall characteristics on the Korean peninsula. Theoretical and Applied Climatology, 2017, 127, 305-326.	1.3	32
54	Reliability–Resiliency–Vulnerability Approach for Drought Analysis in South Korea Using 28 GCMs. Sustainability, 2018, 10, 3043.	1.6	32

#	Article	IF	CITATIONS
55	Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios. Science of the Total Environment, 2022, 838, 156162.	3.9	32
56	Water Resource Vulnerability Characteristics by District's Population Size in a Changing Climate Using Subjective and Objective Weights. Sustainability, 2014, 6, 6141-6157.	1.6	31
57	Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: a Case Study of Flood Damage. Water Resources Management, 2016, 30, 4751-4771.	1.9	31
58	A Multi-Criteria Decision Analysis System for Prioritizing Sites and Types of Low Impact Development Practices: Case of Korea. Water (Switzerland), 2017, 9, 291.	1.2	30
59	Characteristics of Annual and Seasonal Trends of Rainfall and Temperature in Iraq. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 429-438.	1.3	29
60	Projection of Agricultural Water Stress for Climate Change Scenarios: A Regional Case Study of Iraq. Agriculture (Switzerland), 2021, 11, 1288.	1.4	29
61	A Hybrid Model for Statistical Downscaling of Daily Rainfall. Procedia Engineering, 2016, 154, 1424-1430.	1.2	27
62	Uncertainty Analysis of Monthly Precipitation in GCMs Using Multiple Bias Correction Methods under Different RCPs. Sustainability, 2020, 12, 7508.	1.6	25
63	Differences in multiâ€model ensembles of <scp>CMIP5</scp> and <scp>CMIP6</scp> projections for future droughts in South Korea. International Journal of Climatology, 2022, 42, 2688-2716.	1.5	25
64	Abrupt change point detection of annual maximum precipitation using fused lasso. Journal of Hydrology, 2016, 538, 831-841.	2.3	24
65	Integrated watershed management for mitigating streamflow depletion in an urbanized watershed in Korea. Physics and Chemistry of the Earth, 2008, 33, 382-394.	1.2	23
66	Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh. Sustainability, 2018, 10, 819.	1.6	23
67	Potential Impact of Climate Change on Residential Energy Consumption in Dhaka City. Environmental Modeling and Assessment, 2018, 23, 131-140.	1.2	22
68	Uncertainties in evapotranspiration projections associated with estimation methods and CMIP6 GCMs for South Korea. Science of the Total Environment, 2022, 825, 153953.	3.9	21
69	Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4.5 and SSP2-4.5. Sustainability, 2021, 13, 2066.	1.6	20
70	Development of Flood Vulnerability Index Considering Climate Change. Journal of Korea Water Resources Association, 2011, 44, 231-248.	0.3	20
71	Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed. Sustainability, 2017, 9, 1735.	1.6	19
72	Uncertainty Assessment in Drought Severities for the Cheongmicheon Watershed Using Multiple GCMs and the Reliability Ensemble Averaging Method. Sustainability, 2019, 11, 4283.	1.6	19

#	Article	IF	CITATIONS
73	Spatiotemporal changes in precipitation extremes in the arid province of Pakistan with removal of the influence of natural climate variability. Theoretical and Applied Climatology, 2020, 142, 1447-1462.	1.3	19
74	Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh. Sustainability, 2019, 11, 6754.	1.6	18
75	High-Resolution Climate Projections for a Densely Populated Mediterranean Region. Sustainability, 2020, 12, 3684.	1.6	18
76	Integrated assessment of climate change and urbanization impact on adaptation strategies: a case study in two small Korean watersheds. Climatic Change, 2012, 115, 853-872.	1.7	15
77	Iterative Framework for Robust Reclaimed Wastewater Allocation in a Changing Environment Using Multi-Criteria Decision Making. Water Resources Management, 2015, 29, 295-311.	1.9	15
78	Comparison of Meteorological Drought and Hydrological Drought Index. Journal of Korea Water Resources Association, 2015, 48, 69-78.	0.3	15
79	A sensitivity analysis approach of multi-attribute decision making technique to rank flood mitigation projects. KSCE Journal of Civil Engineering, 2013, 17, 1529-1539.	0.9	14
80	Projecting spatiotemporal changes of precipitation and temperature in Iraq for different shared socioeconomic pathways with selected Coupled Model Intercomparison Project Phase 6. International Journal of Climatology, 2022, 42, 9032-9050.	1.5	14
81	Robust Prioritization of Climate Change Adaptation Strategies Using the VIKOR Method with Objective Weights. Journal of the American Water Resources Association, 2015, 51, 1167-1182.	1.0	13
82	Prioritizing Feasible Locations for Permeable Pavement Using MODFLOW and Multi-criteria Decision Making Methods. Water Resources Management, 2015, 29, 4539-4555.	1.9	13
83	Future Hydrological Drought Analysis Considering Agricultural Water Withdrawal Under SSP Scenarios. Water Resources Management, 2022, 36, 2913-2930.	1.9	13
84	Spatial Shift of Aridity and Its Impact on Land Use of Syria. Sustainability, 2019, 11, 7047.	1.6	12
85	Multi-variable model output statistics downscaling for the projection of spatio-temporal changes in rainfall of Borneo Island. Journal of Hydro-Environment Research, 2020, 31, 62-75.	1.0	12
86	Divergence of potential evapotranspiration trends over Pakistan during 1967–2016. Theoretical and Applied Climatology, 2020, 141, 215-227.	1.3	12
87	Robust Siting of Permeable Pavement in Highly Urbanized Watersheds Considering Climate Change Using a Combination of Fuzzy-TOPSIS and the VIKOR Method. Water Resources Management, 2022, 36, 951-969.	1.9	12
88	Parametric Assessment of Water Use Vulnerability Variations Using SWAT and Fuzzy TOPSIS Coupled with Entropy. Sustainability, 2015, 7, 12052-12070.	1.6	11
89	Resident perceptions of urban stream restoration and water quality in South Korea. River Research and Applications, 2018, 34, 481-492.	0.7	11
90	Comparing the functional recognition of aesthetics, hydrology, and quality in urban stream restoration through the framework of environmental perception. River Research and Applications, 2019, 35, 543-552.	0.7	11

#	Article	IF	Citations
91	Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin, China. Theoretical and Applied Climatology, 2022, 147, 535-548.	1.3	11
92	The Development of Rating Curve Considering Variance Function Using Pseudo-likelihood Estimation Method. Water Resources Management, 2010, 24, 321-348.	1.9	10
93	Bayesian rainfall frequency analysis with extreme value using the informative prior distribution. KSCE Journal of Civil Engineering, 2013, 17, 1502-1514.	0.9	10
94	Robust Parameter Estimation Framework of a Rainfall-Runoff Model Using Pareto Optimum and Minimax Regret Approach. Water (Switzerland), 2015, 7, 1246-1263.	1.2	10
95	Decision Support System for the Design and Planning of Low-Impact Development Practices: The Case of Seoul. Water (Switzerland), 2018, 10, 146.	1.2	10
96	Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network. Water (Switzerland), 2020, 12, 2700.	1.2	10
97	Fuzzy TOPSIS Approach to Flood Vulnerability Assessment in Korea. Journal of Korea Water Resources Association, 2012, 45, 901-913.	0.3	10
98	Replicability of Annual and Seasonal Precipitation by CMIP5 and CMIP6 GCMs over East Asia. KSCE Journal of Civil Engineering, 2022, 26, 1978-1989.	0.9	10
99	Incorporating uncertainty and objective load reduction allocation into the Total Maximum Daily Load process in Korea. KSCE Journal of Civil Engineering, 2011, 15, 1289-1297.	0.9	9
100	Temporal Variations of Citizens' Demands on Flood Damage Mitigation, Streamflow Quantity and Quality in the Korean Urban Watershed. Sustainability, 2016, 8, 370.	1.6	9
101	Identifying Spatial Hazard Ranking Using Multicriteria Decision Making Techniques. Journal of Korea Water Resources Association, 2007, 40, 969-983.	0.3	9
102	Prediction of heat waves using meteorological variables in diverse regions of Iran with advanced machine learning models. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1959-1974.	1.9	8
103	Projection of Potential Evapotranspiration for North Korea Based on Selected GCMs by TOPSIS. KSCE Journal of Civil Engineering, 2020, 24, 2849-2859.	0.9	7
104	An Integrated Method for Identifying Present Status and Risk of Drought in Bangladesh. Remote Sensing, 2020, 12, 2686.	1.8	6
105	Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh. Sustainability, 2020, 12, 9810.	1.6	5
106	Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing. Sustainability, 2021, 13, 1549.	1.6	5
107	<scp>Deepâ€learning</scp> based projection of change in irrigation <scp>waterâ€use</scp> under <scp>RCP</scp> 8.5. Hydrological Processes, 2021, 35, e14315.	1.1	5
108	Development and Application of Robust Decision Making Technique Considering Uncertainty of Climatic Change Scenarios. Journal of Korea Water Resources Association, 2013, 46, 897-907.	0.3	5

#	Article	IF	CITATIONS
109	Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices. Journal of Korea Water Resources Association, 2016, 49, 509-518.	0.3	5
110	Application of Streamflow Drought Index using Threshold Level Method. Journal of Korea Water Resources Association, 2014, 47, 491-500.	0.3	5
111	Performance of a Rain Barrel Sharing Network under Climate Change. Water (Switzerland), 2015, 7, 3466-3485.	1.2	4
112	Prediction of Flow Duration Curve in Ungauged Catchments Using Genetic Expression Programming. Procedia Engineering, 2016, 154, 1431-1438.	1.2	4
113	Effects of Non-Stationarity on Flood Frequency Analysis: Case Study of the Cheongmicheon Watershed in South Korea. Sustainability, 2018, 10, 1329.	1.6	4
114	Analysis of Hydrologic Cycle and BOD Loads Using HSPF in the Anyancheon Watershed. Journal of Korea Water Resources Association, 2007, 40, 585-600.	0.3	4
115	Robust Parameter Set Selection for a Hydrodynamic Model Based on Multi-Site Calibration Using Multi-Objective Optimization and Minimax Regret Approach. Water Resources Management, 2018, 32, 3979-3995.	1.9	3
116	The Right to Urban Streams: Quantitative Comparisons of Stakeholder Perceptions in Defining Adaptive Stream Restoration. Sustainability, 2020, 12, 9500.	1.6	2
117	Multivariate Frequency Analysis for Streamflow Drought Having Different Time Resolution Using Archimedean Copula Functions. KSCE Journal of Civil Engineering, 2022, 26, 2013-2021.	0.9	2
118	Effect of Particle Size on Calibration of Schmidt Number. Journal of Coastal Research, 2016, 75, 148-152.	0.1	1
119	Use of the Minimax Regret Approach for Robust Selection of Rainfall-Runoff Model Parameter Values Considering Multiple Events and Multiple Performance Indices. KSCE Journal of Civil Engineering, 2018, 22, 1515-1522.	0.9	1
120	Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves. Journal of Korea Water Resources Association, 2009, 42, 1091-1102.	0.3	1