Yong Sheng Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4468379/yong-sheng-zhao-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

231
papers

9,500
citations

53
h-index

87
g-index

11,252
ext. papers

11,252
avg, IF

6.59
L-index

#	Paper	IF	Citations
231	Construction and optoelectronic properties of organic one-dimensional nanostructures. <i>Accounts of Chemical Research</i> , 2010 , 43, 409-18	24.3	371
230	Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties. <i>Advanced Materials</i> , 2008 , 20, 2859-2876	24	354
229	Nanowire Waveguides and Ultraviolet Lasers Based on Small Organic Molecules. <i>Advanced Materials</i> , 2008 , 20, 1661-1665	24	244
228	Organic Micro/Nanoscale Lasers. Accounts of Chemical Research, 2016, 49, 1691-700	24.3	214
227	Polymorphism-Dependent Emission for Di(p-methoxylphenyl)dibenzofulvene and Analogues: Optical Waveguide/Amplified Spontaneous Emission Behaviors. <i>Advanced Functional Materials</i> , 2012 , 22, 4862-4872	15.6	203
226	Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7276-9	16.4	195
225	Optical waveguide based on crystalline organic microtubes and microrods. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7301-5	16.4	195
224	Lanthanide Metal-Organic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7853-7857	16.4	190
223	Controlling the Cavity Structures of Two-Photon-Pumped Perovskite Microlasers. <i>Advanced Materials</i> , 2016 , 28, 4040-6	24	172
222	A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4640	7.1	167
221	Self-assembly solid-state enhanced red emission of quinolinemalononitrile: optical waveguides and stimuli response. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 192-8	9.5	156
220	Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7125-9	16.4	150
219	Controlling the structures and photonic properties of organic nanomaterials by molecular design. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8713-7	16.4	144
218	Vertical organic nanowire arrays: controlled synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3158-9	16.4	144
217	Materials chemistry and engineering in metal halide perovskite lasers. <i>Chemical Society Reviews</i> , 2020 , 49, 951-982	58.5	143
216	Optical waveguides at micro/nanoscale based on functional small organic molecules. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9060-73	3.6	140
215	Organic printed photonics: From microring lasers to integrated circuits. <i>Science Advances</i> , 2015 , 1, e15	00253	131

214	Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano, 2010, 4, 1630-6	16.7	128
213	Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. <i>Nanoscale</i> , 2012 , 4, 6235-43	7.7	122
212	Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method. <i>Journal of Hazardous Materials</i> , 2014 , 278, 320-9	12.8	117
211	Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2122-5	16.4	115
210	Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. <i>Chemical Society Reviews</i> , 2014 , 43, 4325-40	58.5	112
209	Wire-on-wire growth of fluorescent organic heterojunctions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2880-3	16.4	111
208	Broadband Tunable Microlasers Based on Controlled Intramolecular Charge-Transfer Process in Organic Supramolecular Microcrystals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1118-21	16.4	110
207	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. <i>Energy and Environmental Science</i> , 2016 , 9, 1012-1023	35.4	109
206	A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8910-8918	9.5	108
205	Single Crystalline Submicrotubes from Small Organic Molecules. <i>Chemistry of Materials</i> , 2005 , 17, 6430-	-6 4 . % 5	106
204	From molecular design and materials construction to organic nanophotonic devices. <i>Accounts of Chemical Research</i> , 2014 , 47, 3448-58	24.3	105
203	Controlled self-assembly of organic composite microdisks for efficient output coupling of whispering-gallery-mode lasers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 62-5	16.4	89
202	Full-color laser displays based on organic printed microlaser arrays. <i>Nature Communications</i> , 2019 , 10, 870	17.4	89
201	Dual-color single-mode lasing in axially coupled organic nanowire resonators. <i>Science Advances</i> , 2017 , 3, e1700225	14.3	88
200	Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. <i>Advanced Materials</i> , 2016 , 28, 7424-9	24	86
199	Direct-Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603	217	80
198	Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties. <i>Advanced Materials</i> , 2012 , 24, 2332-6	24	80
197	A Cruciform Electron Donor Acceptor Semiconductor with Solid-State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H2S Gas. <i>Advanced Functional Materials</i> , 2014 , 24, 4250-4258	15.6	77

196	Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides. <i>Advanced Materials</i> , 2012 , 24, OP194-9, OP186	24	77
195	Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1801	7.1	73
194	Engineering Donor-Acceptor Heterostructure Metal-Organic Framework Crystals for Photonic Logic Computation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13890-13896	16.4	70
193	Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4136-4140		69
192	2,4,5-Triphenylimidazole Nanowires with Fluorescence Narrowing Spectra Prepared through the Adsorbent-Assisted Physical Vapor Deposition Method. <i>Chemistry of Materials</i> , 2006 , 18, 2302-2306	9.6	68
191	Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15755-15760	16.4	65
190	Highly solid-state emissive pyridinium-substituted tetraphenylethylene salts: emission color-tuning with counter anions and application for optical waveguides. <i>Small</i> , 2015 , 11, 1335-44	11	65
189	In Situ Visualization of Assembly and Photonic Signal Processing in a Triplet Light-Harvesting Nanosystem. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4269-4278	16.4	64
188	Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing. <i>Advanced Materials</i> , 2013 , 25, 3627-38	24	63
187	lonic liquids for absorption and separation of gases: An extensive database and a systematic screening method. <i>AICHE Journal</i> , 2017 , 63, 1353-1367	3.6	62
186	Self-modulated white light outcoupling in doped organic nanowire waveguides via the fluctuations of singlet and triplet excitons during propagation. <i>Advanced Materials</i> , 2011 , 23, 1380-4	24	62
185	Heteroepitaxial Growth of Multiblock Ln-MOF Microrods for Photonic Barcodes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13803-13807	16.4	61
184	Switch from intra- to intermolecular H-bonds by ultrasound: induced gelation and distinct nanoscale morphologies. <i>Langmuir</i> , 2008 , 24, 7635-8	4	60
183	Optical modulation based on direct photon-plasmon coupling in organic/metal nanowire heterojunctions. <i>Advanced Materials</i> , 2012 , 24, 5681-6	24	58
182	Flat-Panel Laser Displays Based on Liquid Crystal Microlaser Arrays. CCS Chemistry, 2020 , 2, 369-375	7.2	57
181	Electrogenerated chemiluminescence of metal-organic complex nanowires: reduced graphene oxide enhancement and biosensing application. <i>Advanced Materials</i> , 2012 , 24, 4745-9	24	55
180	Tetrahydro[5]helicene-based full-color emission dyes in both solution and solid states: synthesis, structures, photophysical properties and optical waveguide applications. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8373-8380	7.1	54
179	One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission. <i>Advanced Materials</i> , 2012 , 24, 1703-8	24	54

(2020-2014)

178	Controlled synthesis of organic nanophotonic materials with specific structures and compositions. <i>Advanced Materials</i> , 2014 , 26, 6852-70	24	53	
177	Dual-Wavelength Switchable Vibronic Lasing in Single-Crystal Organic Microdisks. <i>Nano Letters</i> , 2017 , 17, 91-96	11.5	51	
176	Switchable Single-Mode Perovskite Microlasers Modulated by Responsive Organic Microdisks. <i>Nano Letters</i> , 2018 , 18, 1241-1245	11.5	50	
175	Tuning the Solid State Emission of the Carbazole and Cyano-Substituted Tetraphenylethylene by Co-Crystallization with Solvents. <i>Small</i> , 2016 , 12, 6554-6561	11	49	
174	Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices. <i>Advanced Materials</i> , 2013 , 25, 2854-9	24	49	
173	Organic composite nanomaterials: energy transfers and tunable luminescent behaviors. <i>New Journal of Chemistry</i> , 2011 , 35, 973	3.6	48	
172	1,6- and 2,7-trans-Estyryl Substituted Pyrenes Exhibiting Both Emissive and Semiconducting Properties in the Solid State. <i>Chemistry of Materials</i> , 2017 , 29, 3580-3588	9.6	47	
171	Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6157-6161	16.4	47	
170	Controlling the Structures and Photonic Properties of Organic Nanomaterials by Molecular Design. <i>Angewandte Chemie</i> , 2013 , 125, 8875-8879	3.6	47	
169	Two-Dimensional Pyramid-like WS Layered Structures for Highly Efficient Edge Second-Harmonic Generation. <i>ACS Nano</i> , 2018 , 12, 689-696	16.7	46	
168	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. <i>Science China Chemistry</i> , 2021 , 64, 2060	7.9	46	
167	Organic core-shell nanostructures: microemulsion synthesis and upconverted emission. <i>Chemical Communications</i> , 2010 , 46, 4959-61	5.8	44	
166	Self-Assembled Organic Crystalline Microrings as Active Whispering-Gallery-Mode Optical Resonators. <i>Advanced Optical Materials</i> , 2013 , 1, 357-361	8.1	41	
165	Covert Photonic Barcodes Based on Light Controlled Acidichromism in Organic Dye Doped Whispering-Gallery-Mode Microdisks. <i>Advanced Materials</i> , 2017 , 29, 1701558	24	40	
164	Synthesis and applications of organic nanorods, nanowires and nanotubes. <i>Annual Reports on the Progress of Chemistry Section C</i> , 2013 , 109, 211		40	
163	Fabrication, structural characterization and photoluminescence of single-crystal Zn(x)Cd(1-x)S zigzag nanowires. <i>Nanotechnology</i> , 2006 , 17, 4644-9	3.4	40	
162	Hexaphenylbenzene-Based, EConjugated Snowflake-Shaped Luminophores: Tunable Aggregation-Induced Emission Effect and Piezofluorochromism. <i>Chemistry - A European Journal</i> , 2015 , 21, 8504-10	4.8	39	
161	Controllable Growth of High-Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. <i>Advanced Materials</i> , 2020 , 32, e1908006	24	39	

160	Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. <i>Science Advances</i> , 2018 , 4, eaap9861	14.3	39
159	Starch-Based Biological Microlasers. <i>ACS Nano</i> , 2017 , 11, 597-602	16.7	38
158	Tailoring the structures and compositions of one-dimensional organic nanomaterials towards chemical sensing applications. <i>Chemical Science</i> , 2014 , 5, 52-57	9.4	38
157	Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3108-3112	16.4	37
156	All-Color Subwavelength Output of Organic Flexible Microlasers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11329-11332	16.4	37
155	Orientation-Controlled 2D Anisotropic and Isotropic Photon Transport in Co-crystal Polymorph Microplates. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4456-4463	16.4	37
154	Spatially Responsive Multicolor Lanthanide-MOF Heterostructures for Covert Photonic Barcodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19060-19064	16.4	37
153	Lanthanide Metal©rganic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. <i>Angewandte Chemie</i> , 2017 , 129, 7961-7965	3.6	36
152	Organic Janus Microspheres: A General Approach to All-Color Dual-Wavelength Microlasers. Journal of the American Chemical Society, 2019 , 141, 5116-5120	16.4	36
151	Tailoring the self-assembled structures and photonic properties of organic nanomaterials. <i>Nanoscale</i> , 2014 , 6, 3467-73	7.7	36
150	Embedded branch-like organic/metal nanowire heterostructures: liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation. <i>Advanced Materials</i> , 2013 , 25, 2784-8	24	36
149	Organic nanocrystals with tunable morphologies and optical properties prepared through a sonication technique. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3300-3	3.6	35
148	Controlling growth of molecular crystal aggregates for efficient optical waveguides. <i>Chemical Communications</i> , 2012 , 48, 9011-3	5.8	34
147	Solid-state fluorescent materials based on coumarin derivatives: polymorphism, stimuli-responsive emission, self-assembly and optical waveguides. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 910-916	7.8	33
146	Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics. <i>Advanced Materials</i> , 2016 , 28, 1319-26	24	33
145	Stimulated Emission-Controlled Photonic Transistor on a Single Organic Triblock Nanowire. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13147-13150	16.4	33
144	Proton-Controlled Organic Microlaser Switch. ACS Nano, 2018, 12, 5734-5740	16.7	33
143	Wettability-Guided Screen Printing of Perovskite Microlaser Arrays for Current-Driven Displays. <i>Advanced Materials</i> , 2020 , 32, e2001999	24	32

142	Low-Threshold Wavelength-Switchable Organic Nanowire Lasers Based on Excited-State Intramolecular Proton Transfer. <i>Angewandte Chemie</i> , 2015 , 127, 7231-7235	3.6	32
141	Constructing small molecular AIE luminophores through a 2,2-(2,2-diphenylethene-1,1-diyl)dithiophene core and peripheral triphenylamine with applications in piezofluorochromism, optical waveguides, and explosive detection. <i>Journal of Materials</i>	7.1	32
140	Hostguest composite organic microlasers. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5600-5609	7.1	31
139	Excimer Emission in Self-Assembled Organic Spherical Microstructures: An Effective Approach to Wavelength Switchable Microlasers. <i>Advanced Optical Materials</i> , 2016 , 4, 1009-1014	8.1	31
138	Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. <i>Chemical Science</i> , 2020 , 11, 9154-	9181	31
137	Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors. <i>Chemical Communications</i> , 2017 , 53, 3102-3105	5.8	30
136	Organic Printed Core-Shell Heterostructure Arrays: A Universal Approach to All-Color Laser Display Panels. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11814-11818	16.4	30
135	Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications. <i>Chemistry - A European Journal</i> , 2018 , 24, 6484-6493	4.8	30
134	Surface tension driven aggregation of organic nanowires via lab in a droplet. <i>Nanoscale</i> , 2018 , 10, 11006	6 / 1/ 1 01	2 30
133	Polymorph-Dependent Electrogenerated Chemiluminescence of Low-Dimensional Organic Semiconductor Structures for Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8891-8899	9.5	29
132	Hydrogen Sulfide Solubility in Ionic Liquids (ILs): An Extensive Database and a New ELM Model Mainly Established by Imidazolium-Based ILs. <i>Journal of Chemical & Data, Engineering Data</i> , 2016 , 61, 397	′0-3 ⁸ 978	8 ²⁹
131	Detection of chemical vapors with tunable emission of binary organic nanobelts. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12935-8	3.6	29
130	Optical wavelength filters based on photonic confinement in semiconductor nanowire homojunctions. <i>Advanced Materials</i> , 2014 , 26, 620-4, 663	24	28
129	Exciton Polaritons in 1D Organic Nanocrystals. <i>Advanced Functional Materials</i> , 2012 , 22, 1330-1332	15.6	28
128	Modulation of a fluorescence switch based on photochromic spirooxazine in composite organic nanoparticles. <i>Nanotechnology</i> , 2007 , 18, 145707	3.4	28
127	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal-Organic Framework Microcrystals. Journal of the American Chemical Society, 2019 , 141, 19959-19963	16.4	28
126	Suppressing Nonradiative Processes of Organic Dye with Metal-Organic Framework Encapsulation toward Near-Infrared Solid-State Microlasers. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 35455-3	5451	27
125	Solvent modulated excited state processes of push-pull molecule with hybridized local excitation and intramolecular charge transfer character. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3894-3902	3.6	26

124	Arylacetylene-substituted naphthalene diimides with dual functions: optical waveguides and n-type semiconductors. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 3207-14	4.5	26
123	Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7191-7199	7.1	26
122	Tuning Growth of Low-Dimensional Organic Nanostructures for Efficient Optical Waveguide Applications. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14134-14138	3.8	26
121	Controlled synthesis of bulk polymer nanocomposites with tunable second order nonlinear optical properties. <i>Advanced Materials</i> , 2012 , 24, 2249-53	24	25
120	Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21677-21682	16.4	25
119	Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications. <i>Science China Chemistry</i> , 2019 , 62, 1257-1262	7.9	24
118	Estimation of Heat Capacity of Ionic Liquids Using SEprofile Molecular Descriptors. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 12987-12992	3.9	24
117	An Optically Reconfigurable Fister Resonance Energy Transfer Process for Broadband Switchable Organic Single-Mode Microlasers. <i>CCS Chemistry</i> ,624-632	7.2	24
116	Tailoring the Energy Levels and Cavity Structures toward Organic Cocrystal Microlasers. <i>ACS Applied Materials & Discourse Materials</i>	9.5	24
115	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. <i>Talanta</i> , 2016 , 146, 41-8	6.2	23
114	Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. <i>Science Advances</i> , 2019 , 5, eaaw2953	14.3	23
113	3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. <i>Advanced Materials</i> , 2021 , 33, e2104418	24	23
112	Efficient triphenylamine-based polymorphs with different mechanochromism and lasing emission: manipulating molecular packing and intermolecular interactions. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4434-4440	7.1	22
111	A Photoisomerization-Activated Intramolecular Charge-Transfer Process for Broadband-Tunable Single-Mode Microlasers. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15992-15996	16.4	22
110	Organic nanophotonic materials: the relationship between excited-state processes and photonic performances. <i>Chemical Communications</i> , 2016 , 52, 8906-17	5.8	21
109	An Aggregation-Induced Emission Luminogen with Efficient Luminescent Mechanochromism and Optical Waveguiding Properties. <i>Asian Journal of Organic Chemistry</i> , 2014 , 3, 118-121	3	21
108	"H"-like Organic Nanowire Heterojunctions Constructed from Cooperative Molecular Assembly for Photonic Applications. <i>Advanced Science</i> , 2015 , 2, 1500130	13.6	21
107	Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection. Nanotechnology, 2008, 19, 505503	3.4	21

(2018-2019)

106	Epitaxial growth of dual-color-emitting organic heterostructures via binary solvent synergism driven sequential crystallization. <i>Nanoscale</i> , 2019 , 11, 7111-7116	7.7	20
105	Electrogenerated upconverted emission from doped organic nanowires. <i>Chemical Communications</i> , 2012 , 48, 85-7	5.8	20
104	Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 4985-93	9.5	19
103	Supramolecular Polymer-Based Fluorescent Microfibers for Switchable Optical Waveguides. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 26526-26532	9.5	19
102	One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications. <i>Small</i> , 2015 , 11, 3728-4	3 11	19
101	Photonic skins based on flexible organic microlaser arrays. <i>Science Advances</i> , 2021 , 7,	14.3	19
100	Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1848-51	3.6	18
99	Heteroepitaxial Growth of Multiblock Ln-MOF Microrods for Photonic Barcodes. <i>Angewandte Chemie</i> , 2019 , 131, 13941-13945	3.6	17
98	Smart responsive organic microlasers with multiple emission states for high-security optical encryption. <i>National Science Review</i> , 2021 , 8, nwaa162	10.8	17
97	Rational Design, Controlled Fabrication, and Photonic Applications of Organic Composite Nanomaterials. <i>Advanced Optical Materials</i> , 2018 , 6, 1701193	8.1	16
96	Metal-organic framework microlasers. <i>Science Bulletin</i> , 2017 , 62, 3-4	10.6	15
95	Pure Metal-Organic Framework Microlasers with Controlled Cavity Shapes. <i>Nano Letters</i> , 2020 , 20, 2020	-2035	15
94	Controlled Assembly of Organic Composite Microdisk/Microwire Heterostructures for Output Coupling of Dual-Color Lasers. <i>Advanced Optical Materials</i> , 2018 , 6, 1701077	8.1	15
93	Engineering DonorAcceptor Heterostructure MetalDrganic Framework Crystals for Photonic Logic Computation. <i>Angewandte Chemie</i> , 2019 , 131, 14028-14034	3.6	15
92	Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. <i>Advanced Materials</i> , 2021 , 33, e2100484	24	15
91	Controlling the Output of Organic Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900037	8.1	14
90	Dual-wavelength lasing from organic dye encapsulated metal-organic framework microcrystals. <i>Chemical Communications</i> , 2019 , 55, 3445-3448	5.8	14
89	Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck[Iondon Principle. <i>Angewandte Chemie</i> , 2018 , 130, 3162-3166	3.6	14

88	Wavelength-Controlled Organic Microlasers Based on Polymorphism-Dependent Intramolecular Charge-Transfer Process. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2656-2661	4.5	14
87	Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. <i>Light: Science and Applications</i> , 2020 , 9, 151	16.7	14
86	Controlled Outcoupling of Whispering-Gallery-Mode Lasers Based on Self-Assembled Organic Single-Crystalline Microrings. <i>Nano Letters</i> , 2019 , 19, 1098-1103	11.5	14
85	Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering. <i>Nanoscale</i> , 2018 , 10, 4680-4685	7.7	13
84	Core-shell nanopillars of fullerene C60/C70 loading with colloidal Au nanoparticles: a Raman scattering investigation. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 9612-6	2.8	13
83	Hybrid Three-Dimensional Spiral WSe Plasmonic Structures for Highly Efficient Second-Order Nonlinear Parametric Processes. <i>Research</i> , 2018 , 2018, 4164029	7.8	13
82	Organic micro/nanoscale materials for photonic barcodes. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 2776-27	78 3 82	13
81	A Universal In Situ Cross-Linking Strategy Enables Orthogonal Processing of Full-Color Organic Microlaser Arrays. <i>Advanced Functional Materials</i> , 2021 , 31, 2103031	15.6	13
80	Orientation-Controlled 2D Anisotropic and Isotropic Photon Transport in Co-crystal Polymorph Microplates. <i>Angewandte Chemie</i> , 2020 , 132, 4486-4493	3.6	12
79	New emissive organic molecule based on pyrido[3,4-g]isoquinoline framework: synthesis and fluorescence tuning as well as optical waveguide behavior. <i>Tetrahedron</i> , 2013 , 69, 2687-2692	2.4	12
78	Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures. <i>ACS Nano</i> , 2017 , 11, 10106-10112	16.7	12
77	Inclusion induced second harmonic generation in low dimensional supramolecular crystals. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3199-3203	7.1	12
76	Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities. <i>Nature Communications</i> , 2021 , 12, 3265	17.4	12
75	A Luminescent Nitrogen-Containing Polycyclic Aromatic Hydrocarbon Synthesized by Photocyclodehydrogenation with Unprecedented Regioselectivity. <i>Chemistry - A European Journal</i> , 2015 , 21, 17973-80	4.8	11
74	Optically Pumped Lasing in Microscale Light-Emitting Electrochemical Cell Arrays for Multicolor Displays. <i>Nano Letters</i> , 2020 , 20, 7116-7122	11.5	11
73	Light-Emitting Metal-Organic Halide 1D and 2D Structures: Near-Unity Quantum Efficiency, Low-Loss Optical Waveguide and Highly Polarized Emission. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13548-13553	16.4	11
72	Randomly Induced Phase Transformation in Silk Protein-Based Microlaser Arrays for Anticounterfeiting. <i>Advanced Materials</i> , 2021 , 33, e2102586	24	11
71	Chiral Hybrid Perovskite Single-Crystal Nanowire Arrays for High-Performance Circularly Polarized Light Detection. <i>Advanced Science</i> , 2021 , 8, e2102065	13.6	11

(2015-2016)

70	Photonic Applications of Metal-Dielectric Heterostructured Nanomaterials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3703-13	9.5	10
69	Fabrication and size-dependent optical properties of copper/lophine core/shell nanocomposites. Journal of Nanoscience and Nanotechnology, 2007 , 7, 1021-7	1.3	10
68	Spatially Responsive Multicolor Lanthanide-MOF Heterostructures for Covert Photonic Barcodes. <i>Angewandte Chemie</i> , 2020 , 132, 19222-19226	3.6	10
67	Polar-surface-driven growth of ZnS microsprings with novel optoelectronic properties. <i>NPG Asia Materials</i> , 2015 , 7, e213-e213	10.3	9
66	Grain Boundary Enhanced Photoluminescence Anisotropy in Two-Dimensional Hybrid Perovskite Films. <i>Advanced Optical Materials</i> , 2020 , 8, 1901780	8.1	9
65	Organic Microlaser Arrays: From Materials Engineering to Optoelectronic Applications. <i>Accounts of Materials Research</i> , 2021 , 2, 340-351	7.5	9
64	Topological-Distortion-Driven Amorphous Spherical Metal-Organic Frameworks for High-Quality Single-Mode Microlasers. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6362-6366	16.4	9
63	Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. <i>Nano Letters</i> , 2021 , 21, 6792-6799	11.5	9
62	Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. <i>ChemPhysChem</i> , 2018 , 19, 2101-2106	3.2	8
61	A facile route to bulk high-Z polymer composites for gamma ray scintillation. <i>Chemical Communications</i> , 2008 , 6008-10	5.8	8
60	Thermally Activated Lasing in Organic Microcrystals toward Laser Displays. <i>Journal of the American Chemical Society</i> , 2021 , 143, 20249-20255	16.4	8
59	Supercrystallographic Reconstruction of 3D Nanorod Assembly with Collectively Anisotropic Upconversion Fluorescence. <i>Nano Letters</i> , 2020 , 20, 7367-7374	11.5	8
58	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 28662-28667	9.5	8
57	Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24519-24525	16.4	8
56	Tunable two-photon pumped lasing from alloyed semiconductor nanoribbons. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4837		7
55	Near-Infrared Microlasers from Self-Assembled Spiropyrane-Based Microsphercial Caps. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 38226-38231	9.5	6
54	Electrically pumped polariton lasers. Journal of Materials Chemistry C, 2014, 2, 2295-2297	7.1	6
53	Dialkoxybenzo[j]fluoranthenes: synthesis, structures, photophysical properties, and optical waveguide application. <i>RSC Advances</i> , 2015 , 5, 18609-18614	3.7	6

52	Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption. <i>Research</i> , 2020 , 2020, 6539431	7.8	6
51	Organic Printed CoreBhell Heterostructure Arrays: A Universal Approach to All-Color Laser Display Panels. <i>Angewandte Chemie</i> , 2020 , 132, 11912-11916	3.6	6
50	Wavelength Division Multiplexer Based on Semiconductor Heterostructures Constructed via Nanoarchitectonics. <i>Small</i> , 2018 , 14, 1702698	11	6
49	Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities. <i>Advanced Materials</i> , 2021 , e2106095	24	6
48	Controlled self-assembly of Triazatruxene overlength microwires for optical waveguide. <i>Organic Electronics</i> , 2019 , 74, 276-281	3.5	5
47	Simultaneous structure and luminescence property control of barium carbonate nanocrystals through small amount of lanthanide doping. <i>Science Bulletin</i> , 2017 , 62, 1239-1244	10.6	5
46	Pursuing electrically pumped lasing with organic semiconductors. CheM, 2021,	16.2	5
45	Loss compensation of surface plasmon polaritons in organic/metal nanowire heterostructures toward photonic logic processing. <i>Science China Materials</i> , 2020 , 63, 1464-1471	7.1	5
44	Smart Protein-Based Biolasers: An Alternative Way to Protein Conformation Detection. <i>ACS Applied Materials & Detection and </i>	9.5	5
43	A New Benzodithiophene-Based Cruciform Electron-Donor E lectron-Acceptor Molecule with Ambipolar/Photoresponsive Semiconducting and Red-Light-Emissive Properties. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 1277-1284	3	4
42	Loss compensation during subwavelength propagation of enhanced second-harmonic generation signals in a hybrid plasmonic waveguide. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 491-496	7.8	4
41	3D-printed optical-electronic integrated devices. <i>Science China Chemistry</i> , 2019 , 62, 1398-1404	7.9	4
40	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. <i>Ultramicroscopy</i> , 2011 , 111, 812-6	3.1	4
39	Ultrahigh Color Rendering in RGB Perovskite Micro-Light-Emitting Diode Arrays with Resonance-Enhanced Photon Recycling for Next Generation Displays. <i>Advanced Optical Materials</i> ,21016	542 ¹	4
38	Delayed Fluorescent Emission from Pyrene Doped Phenanthrene Nanoparticles Based on Triplet-triplet Energy Transfer. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 2103-2108	4.9	3
37	Differential polymer chain scission enables free-standing microcavity laser arrays <i>Advanced Materials</i> , 2021 , e2107611	24	3
36	Gridization-Driven Mesoscale Self-assembly of Conjugated Nanopolymers into Luminescence-anisotropic Photonic Crystals <i>Advanced Materials</i> , 2022 , e2109399	24	3
35	Research progress on organic micro/nanoscale lasers. <i>Scientia Sinica Chimica</i> , 2018 , 48, 127-142	1.6	3

34	Full-color flexible laser displays based on random laser arrays. Science China Materials, 2021, 64, 2805-2	28 1 .2	3
33	Controlled Shape Evolution of Pure-MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. <i>Chemistry - A European Journal</i> , 2021 , 27, 3297-3301	4.8	3
32	2D Metal-Organic Complex Luminescent Crystals. Advanced Functional Materials, 2021 , 31, 2106160	15.6	3
31	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal <i>Journal of Physical Chemistry Letters</i> , 2021 , 130-135	6.4	3
30	Screen-Overprinted Perovskite RGB Microdisk Arrays Based on Wet-Solute-Chemical Dynamics for Full-Color Laser Displays <i>ACS Applied Materials & Displays ACS Applied Materials & Displays</i> .	9.5	3
29	Recent advances in luminescent metal-organic frameworks and their photonic applications. <i>Chemical Communications</i> , 2021 ,	5.8	2
28	Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing. <i>Angewandte Chemie</i> , 2020 , 132, 21861-21866	3.6	2
27	Organic composite materials: Understanding and manipulating excited states toward higher light-emitting performance. <i>Aggregate</i> , 2021 , 2, e103	22.9	2
26	A switchable multimode microlaser based on an AIE microsphere. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11180-11188	7.1	2
25	Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. <i>Angewandte Chemie</i> , 2021 , 133, 24724	3.6	2
24	Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15319-15325	16.4	2
23	Perovskite Origami for Programmable Microtube Lasing. Advanced Functional Materials,2109080	15.6	2
22	A Photoisomerization-Activated Intramolecular Charge-Transfer Process for Broadband-Tunable Single-Mode Microlasers. <i>Angewandte Chemie</i> , 2020 , 132, 16126-16130	3.6	1
21	InnenrEktitelbild: Engineering DonorAcceptor Heterostructure MetalDrganic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). <i>Angewandte Chemie</i> , 2019 , 131, 141	3 3: 941	13 5
20	DonorAcceptor Molecules: A Cruciform Electron DonorAcceptor Semiconductor with Solid-State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H2S Gas (Adv. Funct. Mater. 27/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 4376-4376	15.6	1
19	Nanowires: Optical Wavelength Filters Based on Photonic Confinement in Semiconductor Nanowire Homojunctions (Adv. Mater. 4/2014). <i>Advanced Materials</i> , 2014 , 26, 663-663	24	1
18	Nano- and microstructured gold tubes for surface-enhanced Raman scattering by vapor-induced strain of thin films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19202		1
17	Polymer Composites for Radiation Detection: Diiodobenzene and light emitting polymer molecular solutions for gamma detection. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1038, 1		1

16	Strong Exciton P hoton Coupling in Dye-Doped Polymer Microcavities. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000456	3.9	1
15	Light-Emitting Metal©rganic Halide 1D and 2D Structures: Near-Unity Quantum Efficiency, Low-Loss Optical Waveguide and Highly Polarized Emission. <i>Angewandte Chemie</i> , 2021 , 133, 13660-136	563 ⁶	1
14	Crystalline Solids: Tuning the Solid State Emission of the Carbazole and Cyano-Substituted Tetraphenylethylene by Co-Crystallization with Solvents (Small 47/2016). <i>Small</i> , 2016 , 12, 6553-6553	11	1
13	Exciton funneling amplified photoluminescence anisotropy in organic radical-doped microcrystals. Journal of Materials Chemistry C,	7.1	1
12	Chemical Sensors: Hydrogen Peroxide Vapor Sensing with Organic Core/Sheath Nanowire Optical Waveguides (Adv. Mater. 35/2012). <i>Advanced Materials</i> , 2012 , 24, OP186-OP186	24	О
11	Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays. <i>Science China Chemistry</i> , 2021 , 64, 629-635	7.9	O
10	Topological-Distortion-Driven Amorphous Spherical Metal-Organic Frameworks for High-Quality Single-Mode Microlasers. <i>Angewandte Chemie</i> , 2021 , 133, 6432-6436	3.6	О
9	Organic Self-assembled Microcavities and Microlasers 2020 , 203-231		
8	Organic One-Dimensional Nanostructures: Construction and Optoelectronic Properties 2013 , 381-395		
7	Organic Nanophotonics: Controllable Assembly of Optofunctional Molecules toward Low-Dimensional Materials with Desired Photonic Properties 2015 , 131-160		
6	Photonics: One-Dimensional Organic Photonic Heterostructures: Rational Construction and Spatial Engineering of Excitonic Emission (Adv. Mater. 13/2012). <i>Advanced Materials</i> , 2012 , 24, 1622-1622	24	
5	Nanowire Heterostructures: Embedded Branch-Like Organic/Metal Nanowire Heterostructures: Liquid-Phase Synthesis, Efficient Photon-Plasmon Coupling, and Optical Signal Manipulation (Adv. Mater. 20/2013). <i>Advanced Materials</i> , 2013 , 25, 2868-2868	24	
4	InnenrEktitelbild: Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding (Angew. Chem. 46/2021). <i>Angewandte Chemie</i> , 2021 , 133, 2493	31 ³ 2 ⁶ 49	31
3	Promising Organic Materials Screened out by Computational Strategy Towards Electrically Pumped Lasers. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1149-1150	2.2	
2	Laser Action in Hybrid OrganicIhorganic Perovskites 2022 , 107-135		
1	Halide Perovskites for Photonics and Optoelectronics: introduction to special issue. <i>Optical Materials Express</i> , 2022 , 12, 1764	2.6	