Ariel Ismach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468351/publications.pdf Version: 2024-02-01

ADIEL ISMACH

#	Article	IF	CITATIONS
1	Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. Materials Horizons, 2022, 9, 1089-1098.	6.4	8
2	Halide chemical vapor deposition of 2D semiconducting atomically-thin crystals: From self-seeded to epitaxial growth. Applied Materials Today, 2022, 26, 101379.	2.3	5
3	Modulating the Optoelectronic Properties of MoS ₂ by Highly Oriented Dipole-Generating Monolayers. ACS Applied Materials & Interfaces, 2021, 13, 32590-32597.	4.0	12
4	Maskless Device Fabrication and Laser-Induced Doping in MoS2 Field Effect Transistors Using a Thermally Activated Cyclic Polyphthalaldehyde Resist. ACS Applied Materials & Interfaces, 2021, 13, 5399-5405.	4.0	3
5	Growth-Etch Metal–Organic Chemical Vapor Deposition Approach of WS ₂ Atomic Layers. ACS Nano, 2021, 15, 526-538.	7.3	56
6	Light and complex 3D MoS ₂ /graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. Nanoscale, 2020, 12, 2715-2725.	2.8	35
7	Catalytic Hydrogen Evolution Reaction Enhancement on Vertically Aligned MoS ₂ by Synergistic Addition of Silver and Palladium. ChemElectroChem, 2020, 7, 4224-4232.	1.7	1
8	Scalable Integration of Coplanar Heterojunction Monolithic Devices on Two-Dimensional In ₂ Se ₃ . ACS Nano, 2020, 14, 17543-17553.	7.3	28
9	Selective Area Growth and Transfer of High Optical Quality MoS ₂ Layers. Advanced Materials Interfaces, 2020, 7, 2001549.	1.9	19
10	Large‣cale and Robust Multifunctional Vertically Aligned MoS ₂ Photoâ€Memristors. Advanced Functional Materials, 2020, 30, 2005718.	7.8	22
11	Epitaxial growth of In2Se3 on monolayer transition metal dichalcogenide single crystals for high performance photodetectors. Applied Materials Today, 2020, 20, 100734.	2.3	18
12	Large-Scale characterization of Two-Dimensional Monolayer MoS2 Island Domains Using Spectroscopic Ellipsometry and Reflectometry. Applied Surface Science, 2020, 524, 146418.	3.1	18
13	Tuning the morphology and chemical composition of MoS2 nanostructures. Journal of Materials Science, 2019, 54, 7768-7779.	1.7	17
14	MoS2 cleaning by acetone and UV-ozone: Geological and synthetic material. Applied Surface Science, 2019, 478, 183-188.	3.1	8
15	Seeded-growth of WS ₂ atomic layers: the effect on chemical and optical properties. Nanoscale, 2019, 11, 22493-22503.	2.8	22
16	Flatlands in the Holy Land: The Evolution of Layered Materials Research in Israel. Advanced Materials, 2018, 30, e1706581.	11.1	7
17	Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Materials, 2017, 4, 025117.	2.0	54
18	Revealing the planar chemistry of two-dimensional heterostructures at the atomic level. Nature Communications, 2015, 6, 7482.	5.8	64

ARIEL ISMACH

#	Article	IF	CITATIONS
19	Synthesis and characterization of 2D layered materials: The case of hexagonal boron nitride. , 2014, , .		0
20	Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique. Nano Letters, 2014, 14, 4682-4686.	4.5	67
21	Formation of Ordered vs Disordered Carbon Nanotube Serpentines on Anisotropic vs Isotropic Substrates. Journal of Physical Chemistry C, 2014, 118, 14044-14050.	1.5	8
22	Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499.	7.3	77
23	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
24	Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy, 2012, 1, 164-171.	8.2	151
25	Fermi velocity engineering in graphene by substrate modification. Scientific Reports, 2012, 2, .	1.6	344
26	Toward the Controlled Synthesis of Hexagonal Boron Nitride Films. ACS Nano, 2012, 6, 6378-6385.	7.3	295
27	Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes Nano Letters, 2011, 11, 1201-1207.	4.5	111
28	Roller-style electrostatic printing of prepatterned few-layer-graphenes. Applied Physics Letters, 2010, 96, 013109.	1.5	18
29	Modulating the Electronic Properties along Carbon Nanotubes via Tubeâ^'Substrate Interaction. Nano Letters, 2010, 10, 5043-5048.	4.5	49
30	Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Letters, 2010, 10, 2454-2460.	4.5	302
31	Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010, 10, 1542-1548.	4.5	439
32	Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters, 2009, 103, 186101.	2.9	71
33	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200.	15.6	109
34	Nanofacet Lithography: A New Bottom-Up Approach to Nanopatterning and Nanofabrication by Soft Replication of Spontaneously Faceted Crystal Surfaces. Advanced Materials, 2007, 19, 1325-1330.	11.1	47
35	Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710.	4.5	80
36	Carbon Nanotube Graphoepitaxy:Â Highly Oriented Growth by Faceted Nanosteps. Journal of the American Chemical Society, 2005, 127, 11554-11555.	6.6	136

3

#	Article	IF	CITATIONS
37	Atomic-Step-Templated Formation of Single Wall Carbon Nanotube Patterns. Angewandte Chemie - International Edition, 2004, 43, 6140-6143.	7.2	184

- Cover Picture: Atomic-Step-Templated Formation of Single Wall Carbon Nanotube Patterns (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf
- Chemical Vapor Deposition of 2D Materials and Heterostructures., 0,,.