Ariel Ismach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468351/publications.pdf

Version: 2024-02-01

331259 344852 6,947 39 21 36 h-index citations g-index papers 39 39 39 13038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
2	Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010, 10, 1542-1548.	4.5	439
3	Fermi velocity engineering in graphene by substrate modification. Scientific Reports, 2012, 2, .	1.6	344
4	Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Letters, 2010, 10, 2454-2460.	4.5	302
5	Toward the Controlled Synthesis of Hexagonal Boron Nitride Films. ACS Nano, 2012, 6, 6378-6385.	7.3	295
6	Atomic-Step-Templated Formation of Single Wall Carbon Nanotube Patterns. Angewandte Chemie - International Edition, 2004, 43, 6140-6143.	7.2	184
7	Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy, 2012, 1, 164-171.	8.2	151
8	Carbon Nanotube Graphoepitaxy:Â Highly Oriented Growth by Faceted Nanosteps. Journal of the American Chemical Society, 2005, 127, 11554-11555.	6.6	136
9	Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes Nano Letters, 2011, 11, 1201-1207.	4.5	111
10	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200.	15.6	109
10		15.6 4.5	109
	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous		
11	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710. Graphene Synthesis <i>via</i> i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7,	4.5	80
11 12	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710. Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499. Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters,	4.5 7.3	80 77
11 12 13	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710. Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499. Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters, 2009, 103, 186101. Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique. Nano Letters,	4.5 7.3 2.9	80 77 71
11 12 13	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710. Graphene Synthesis <i>>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499. Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters, 2009, 103, 186101. Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique. Nano Letters, 2014, 14, 4682-4686. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level. Nature	4.5 7.3 2.9 4.5	80 77 71 67
11 12 13 14	Self-organized nanotube serpentines. Nature Nanotechnology, 2008, 3, 195-200. Orthogonal Self-Assembly of Carbon Nanotube Crossbar Architectures by Simultaneous Graphoepitaxy and Field-Directed Growth. Nano Letters, 2006, 6, 1706-1710. Graphene Synthesis ⟨i>via⟨ i⟩ Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499. Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters, 2009, 103, 186101. Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique. Nano Letters, 2014, 14, 4682-4686. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level. Nature Communications, 2015, 6, 7482. Growth-Etch Metal–Organic Chemical Vapor Deposition Approach of WS⟨sub⟩2⟨ sub⟩ Atomic Layers.	4.5 7.3 2.9 4.5 5.8	80 77 71 67 64

#	Article	IF	Citations
19	Nanofacet Lithography: A New Bottom-Up Approach to Nanopatterning and Nanofabrication by Soft Replication of Spontaneously Faceted Crystal Surfaces. Advanced Materials, 2007, 19, 1325-1330.	11.1	47
20	Light and complex 3D MoS ₂ /graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. Nanoscale, 2020, 12, 2715-2725.	2.8	35
21	Scalable Integration of Coplanar Heterojunction Monolithic Devices on Two-Dimensional In ₂ Se ₃ . ACS Nano, 2020, 14, 17543-17553.	7.3	28
22	Seeded-growth of WS ₂ atomic layers: the effect on chemical and optical properties. Nanoscale, 2019, 11, 22493-22503.	2.8	22
23	Largeâ€Scale and Robust Multifunctional Vertically Aligned MoS ₂ Photoâ€Memristors. Advanced Functional Materials, 2020, 30, 2005718.	7.8	22
24	Selective Area Growth and Transfer of High Optical Quality MoS ₂ Layers. Advanced Materials Interfaces, 2020, 7, 2001549.	1.9	19
25	Roller-style electrostatic printing of prepatterned few-layer-graphenes. Applied Physics Letters, 2010, 96, 013109.	1.5	18
26	Epitaxial growth of In2Se3 on monolayer transition metal dichalcogenide single crystals for high performance photodetectors. Applied Materials Today, 2020, 20, 100734.	2.3	18
27	Large-Scale characterization of Two-Dimensional Monolayer MoS2 Island Domains Using Spectroscopic Ellipsometry and Reflectometry. Applied Surface Science, 2020, 524, 146418.	3.1	18
28	Tuning the morphology and chemical composition of MoS2 nanostructures. Journal of Materials Science, 2019, 54, 7768-7779.	1.7	17
29	Modulating the Optoelectronic Properties of MoS ₂ by Highly Oriented Dipole-Generating Monolayers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32590-32597.	4.0	12
30	Formation of Ordered vs Disordered Carbon Nanotube Serpentines on Anisotropic vs Isotropic Substrates. Journal of Physical Chemistry C, 2014, 118, 14044-14050.	1.5	8
31	MoS2 cleaning by acetone and UV-ozone: Geological and synthetic material. Applied Surface Science, 2019, 478, 183-188.	3.1	8
32	Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. Materials Horizons, 2022, 9, 1089-1098.	6.4	8
33	Flatlands in the Holy Land: The Evolution of Layered Materials Research in Israel. Advanced Materials, 2018, 30, e1706581.	11.1	7
34	Halide chemical vapor deposition of 2D semiconducting atomically-thin crystals: From self-seeded to epitaxial growth. Applied Materials Today, 2022, 26, 101379.	2.3	5
35	Maskless Device Fabrication and Laser-Induced Doping in MoS2 Field Effect Transistors Using a Thermally Activated Cyclic Polyphthalaldehyde Resist. ACS Applied Materials & Emp; Interfaces, 2021, 13, 5399-5405.	4.0	3
36	Catalytic Hydrogen Evolution Reaction Enhancement on Vertically Aligned MoS ₂ by Synergistic Addition of Silver and Palladium. ChemElectroChem, 2020, 7, 4224-4232.	1.7	1

#	ARTICLE	IF	CITATIONS
37	Cover Picture: Atomic-Step-Templated Formation of Single Wall Carbon Nanotube Patterns (Angew.) Tj ETQq $1\ 1$	0.784314	rgBT /Over <mark>lo</mark>
38	Synthesis and characterization of 2D layered materials: The case of hexagonal boron nitride. , 2014, , .		0
39	Chemical Vapor Deposition of 2D Materials and Heterostructures. , 0, , .		O