
Kreå;imir MolÄanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards understanding π-stacking interactions between non-aromatic rings. IUCrJ, 2019, 6, 156-166.	2.2	60
2	Salts and co-crystals of chloranilic acid with organic bases: is it possible to predict a salt formation?. CrystEngComm, 2010, 12, 925-939.	2.6	54
3	A 3D Oxalate-Based Network as a Precursor for the CoMn ₂ O ₄ Spinel: Synthesis and Structural and Magnetic Studies. Inorganic Chemistry, 2014, 53, 9633-9643.	4.0	52
4	Face-to-face π-stacking in the multicomponent crystals of chloranilic acid, alkali hydrogenchloranilates, and water. CrystEngComm, 2011, 13, 4211.	2.6	46
5	A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Nâ‹â‹â‹Br Halogen Bonds. Angewandte Chemie - International Edition, 2019, 58, 15702-15706.	13.8	41
6	Contribution of Different Crystal Packing Forces in π-Stacking: From Noncovalent to Covalent Multicentric Bonding. Crystal Growth and Design, 2019, 19, 5967-5980.	3.0	40
7	Stacking of metal chelating rings with π-systems in mononuclear complexes of copper(ii) with 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone (chloranilic acid) and 2,2′-bipyridine ligands. Dalton Transactions, 2013, 42, 15756.	3.3	37
8	Synthesis and Characterization of Dicyclopalladated Complexes of Azobenzene Derivatives by Experimental and Computational Methods. Inorganic Chemistry, 2008, 47, 10446-10454.	4.0	33
9	Stabilisation of tetrabromo- and tetrachlorosemiquinone (bromanil and chloranil) anion radicals in crystals. CrystEngComm, 2011, 13, 5170.	2.6	30
10	Temperature induced reversible structural and magnetic changes in a crystal of tetrachlorosemiquinone anion radical. CrystEngComm, 2012, 14, 7958.	2.6	29
11	Partially Covalent Two-Electron/Multicentric Bonding between Semiquinone Radicals. Crystal Growth and Design, 2019, 19, 391-402.	3.0	29
12	Pancake Bonding in π‧tacked Trimers in a Salt of Tetrachloroquinone Anion. Chemistry - A European Journal, 2018, 24, 8292-8297.	3.3	26
13	Multifunctionality and size of the chloranilate ligand define the topology of transition metal coordination polymers. New Journal of Chemistry, 2017, 41, 6785-6794.	2.8	25
14	Fine Tuning of π-Stack Separation Distances of Semiquinone Radicals Affects Their Magnetic and Electric Properties. Crystal Growth and Design, 2016, 16, 4777-4782.	3.0	24
15	Photochemistry of ω-(o-vinylphenyl)-ï‰â€²-(phenyl/2-furyl) butadienes: New approach to 4-substituted benzobicyclo[3.2.1]octadienes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 190-196.	3.9	23
16	A Partial Proton Transfer in Hydrogen Bond O â^' H···O in Crystals of Anhydrous Potassium and Rubidium Complex Chloranilates. Journal of Physical Chemistry A, 2011, 115, 3154-3166.	2.5	23
17	Ï€-Stacking of quinoid rings in crystals of alkali diaqua hydrogen chloranilates. CrystEngComm, 2009, 11, 1407.	2.6	22
18	A novel type of coordination mode of chloranilic acid leading to the formation of polymeric coordination ribbon in the series of mixed-ligand copper(<scp>ii</scp>) complexes with 1,10-phenanthroline. Dalton Transactions, 2014, 43, 7208-7218.	3.3	22

#	Article	IF	CITATIONS
19	Design, Synthesis, and Xâ€ray Structural Analyses of Diamantane Diammonium Salts: Guests for Cucurbit[<i>n</i>]uril (CB[<i>n</i>]) Hosts. European Journal of Organic Chemistry, 2014, 2014, 2533-2542.	2.4	22
20	Magnetic order in a novel 3D oxalate-based coordination polymer {[Cu(bpy) ₃][Mn ₂ (C ₂ O ₄) ₃]·H ₂ O} Dalton Transactions, 2015, 44, 20626-20635.	}⊲ssaeb>n </td <td>søb>.</td>	søb>.
21	2D and 3D supramolecular assemblies of double cyclopalladated azobenzenes realized by C–Hâ∢Cl–Pd, ï€â<ï4 and C–Hâ∢ï€ interactions. Journal of Organometallic Chemistry, 2007, 692, 3874-3881.	€ 1.8	20
22	1D Heterometallic Oxalate Compounds as Precursors for Mixed Ca–Cr Oxides – Synthesis, Structures, and Magnetic Studies. European Journal of Inorganic Chemistry, 2014, 2014, 5703-5713.	2.0	20
23	From mononuclear to linear one-dimensional coordination species of copper(<scp>ii</scp>)–chloranilate: design and characterization. RSC Advances, 2016, 6, 62785-62796.	3.6	20
24	New mononuclear oxalate complexes of copper(II) with 2D and 3D architectures: Synthesis, crystal structures and spectroscopic characterization. Polyhedron, 2010, 29, 1291-1298.	2.2	19
25	Helically Chiral Peptides That Contain Ferroceneâ€1,1′â€diamine Scaffolds as a Turn Inducer. Chemistry - A European Journal, 2017, 23, 10372-10395.	3.3	19
26	Iodide···π Interactions of Perhalogenated Quinoid Rings in Co-crystals with Organic Bases. Crystal Growth and Design, 2018, 18, 5182-5193.	3.0	19
27	Probing semiconductivity in crystals of stable semiquinone radicals: organic salts of 5,6-dichloro-2,3-dicyanosemiquinone (DDQ) radical anions. CrystEngComm, 2018, 20, 1862-1873.	2.6	18
28	Malleable Electronic Structure of Chloranilic Acid and Its Species Determined by X-ray Charge Density Studies. Crystal Growth and Design, 2019, 19, 2802-2810.	3.0	18
29	Spin-coupling in dimers of 2,3-dicyano-5,6-dichlorosemiquinone radical anions in the crystalline state. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 181-190.	1.1	16
30	Spin pairing, electrostatic and dipolar interactions influence stacking of radical anions in alkali salts of 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile (DDQ). CrystEngComm, 2017, 19, 1801-1808.	2.6	15
31	Face-to-face stacking of dianionic quinoid rings in crystals of alkali salts of 2,5-dihydroxyquinone in view of π-system polarization. CrystEngComm, 2013, 15, 135-143.	2.6	14
32	Nitranilic acid hexahydrate, a novel benchmark system of the Zundel cation in an intrinsically asymmetric environment: spectroscopic features and hydrogen bond dynamics characterised by experimental and theoretical methods. Physical Chemistry Chemical Physics, 2014, 16, 998-1007.	2.8	14
33	Dimensionality controlled by light exposure: 1D <i>versus</i> 3D oxalate-bridged [CuFe] coordination polymers based on an [Fe(C ₂ O ₄) ₃] ^{3â~'} metallotecton. Inorganic Chemistry Frontiers, 2019, 6, 3327-3335.	6.0	14
34	Functionalization of the benzobicyclo[3.2.1]octadiene skeleton via photocatalytic oxygenation of thiophene and furan derivatives: The impact of the type and position of the heteroatom. Journal of Molecular Structure, 2014, 1063, 83-91.	3.6	13
35	A Bismuth(III) Coordination Polymer With Pyridine-2,3-dicarboxylic Acid as Precursor for Preparation of Bi2O3 Nanoparticles via Thermal Decomposition. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 507-513.	0.6	13
36	Ladder-like [CrCu] coordination polymers containing unique bridging modes of [Cr(C ₂ O ₄) ₃] ^{3â^²} and Cr ₂ O ₇ ^{2â^²} . Dalton Transactions, 2019, 48, 7891-7898.	3.3	13

Kreåiimir Moläanov

#	Article	IF	CITATIONS
37	Synthesis, Photochemistry, and Photophysics of Butadiene Derivatives: Influence of the Methyl Group on the Molecular Structure and Photoinduced Behavior. Journal of Organic Chemistry, 2011, 76, 8641-8657.	3.2	12
38	Synthesis and photochemical transformations of new butadiene chromophores: The influence of the nature and position of chlorine substituent on the photoinduced behaviour. Journal of Molecular Structure, 2013, 1051, 1-14.	3.6	12
39	Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation. Molecules, 2014, 19, 12852-12880.	3.8	12
40	Experimental evidence of a 3-centre, 2-electron covalent bond character of the central O–H–O fragment on the Zundel cation in crystals of Zundel nitranilate tetrahydrate. CrystEngComm, 2017, 19, 3898-3901.	2.6	11
41	A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Nâ‹â‹â‹Br Halogen Bonds. Angewandte Chemie, 2019, 131, 15849-15853.	2.0	11
42	Face-to-face stacking of quinoid rings of alkali salts of bromanilic acid. Acta Crystallographica Section B: Structural Science, 2012, 68, 57-65.	1.8	10
43	Structural, Electrical, and Magnetic Versatility of the Oxalate-Based [CuFe] Compounds Containing 2,2′:6′,2″-Terpyridine: Anion-Directed Synthesis. Inorganic Chemistry, 2020, 59, 18078-18089.	4.0	10
44	A polar/Ĩ€ model of interactions explains face-to-face stacked quinoid rings: a case study of the crystal of potassium hydrogen chloranilate dihydrate. CrystEngComm, 2015, 17, 8645-8656.	2.6	9
45	Influence of organic cations on the stacking of semiquinone radical anions. CrystEngComm, 2019, 21, 6920-6928.	2.6	9
46	Pancake-bonding of semiquinone radicals under variable temperature and pressure conditions. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 285-291.	1.1	9
47	Two new dinuclear complexes with dipicolinate and bridging 2-aminopyrazine ligands: preparation, structural, spectroscopic, and thermal characterizations. Journal of Coordination Chemistry, 2012, 65, 3449-3457.	2.2	8
48	Synthesis of marine alkaloids leucettamines B and C by β-lactam ring rearrangement. Synthetic Communications, 2017, 47, 764-770.	2.1	8
49	Nitranilic acid as a basis for construction of coordination polymers: from discrete monomers to 3D networks. CrystEngComm, 2019, 21, 2962-2969.	2.6	8
50	Two-Electron Multicenter Bonding (â€~Pancake Bonding') in Dimers of 5,6-Dichloro-2,3-dicyanosemiquinone (DDQ) Radical Anions. Crystal Growth and Design, 2020, 20, 5435-5443.	3.0	8
51	Magnetic and Electrical Behaviors of the Homo- and Heterometallic 1D and 3D Coordination Polymers Based on the Partial Decomposition of the [Cr(C2O4)3]3â^ Building Block. Materials, 2020, 13, 5341.	2.9	8
52	Charge density studies of multicentre two-electron bonding of an anion radical at non-ambient temperature and pressure. IUCrJ, 2021, 8, 644-654.	2.2	8
53	Synthesis and theoretical investigation of some new 4-substituted flavylium salts. Food Chemistry, 2017, 229, 688-694.	8.2	7
54	Oxalamide-Bridged Ferrocenes: Conformational and Gelation Properties and <i>In Vitro</i> Antitumor Activity. Organometallics, 2022, 41, 920-936.	2.3	7

Kreåiimir Moläanov

#	Article	IF	CITATIONS
55	Hydrogen bonding topology influences gelating properties of malonamides. Structural Chemistry, 2013, 24, 597-609.	2.0	5
56	Alkali Salts of Nitranilic and Cyanochloranilic Acids. Croatica Chemica Acta, 2018, 91, .	0.4	4
57	Conformational disorder of dioxane ring in a crystal of 2,5-di(isopropylamide)-3,4-ethylenedioxythiophene. Journal of Molecular Structure, 2011, 987, 174-179.	3.6	3
58	A simple and easy to perform synthetic route to functionalized thienyl bicyclo[3.2.1]octadienes. Beilstein Journal of Organic Chemistry, 2020, 16, 1092-1099.	2.2	3
59	Nitrochloranilic acid: a novel asymmetrically substituted quinoid bridging ligand for design of coordination polymers. CrystEngComm, 2021, 23, 2304-2315.	2.6	3
60	Humidity-Sensing Properties of an 1D Antiferromagnetic Oxalate-Bridged Coordination Polymer of Iron(III) and Its Temperature-Induced Structural Flexibility. Materials, 2021, 14, 5543.	2.9	3
61	Conformational Preferences and Antiproliferative Activity of Peptidomimetics Containing Methyl $1\hat{a}\in^2$ -Aminoferrocene-1-carboxylate and Turn-Forming Homo- and Heterochiral Pro-Ala Motifs. International Journal of Molecular Sciences, 2021, 22, 13532.	4.1	3
62	Novel ferrocene imide derivatives: synthesis, conformational analysis and X-ray structure. Heliyon, 2022, 8, e09470.	3.2	2
63	An unusual intermolecular interaction between a lone pair and an electron-rich π-electron system of a quinoid dianion. Crystal Growth and Design, 0, , .	3.0	1
64	Homo- and heterometallic oxalate-based complexes obtained using [Cr(C2O4)3]3– building block – two polymorphs of a solvate. Polyhedron, 2021, 211, 115556.	2.2	1
65	Semiconductive 2D arrays of pancake-bonded oligomers of partially charged TCNQ radicals. IUCrJ, 2022, 9, 449-467.	2.2	1
66	Supramolecular Architecture of Chloranilate Salts with Organic Cations. Croatica Chemica Acta, 2019, 92, 297-305.	0.4	0
67	Analysis of supramolecular interactions directing crystal packing of novel mononuclear chloranilate-based complexes: Different types of hydrogen bonding and π-stacking. Polyhedron, 2020, 189, 114723.	2.2	0
68	Stereokemija na drugi naÄin. Kemija U Industriji, 2019, 68, 41-47.	0.3	0