
Shenghan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467834/publications.pdf Version: 2024-02-01

SHENCHAN ZHANC

#	Article	IF	CITATIONS
1	Distributed Fiber-Optic Strain Sensing of an Innovative Reinforced Concrete Beam–Column Connection. Sensors, 2022, 22, 3957.	3.8	3
2	A mechanical model to interpret distributed fiber optic strain measurement at displacement displacement discontinuities. Structural Health Monitoring, 2021, 20, 2584-2603.	7.5	17
3	Fiber optic sensing of concrete cracking and rebar deformation using several types of cable. Structural Control and Health Monitoring, 2021, 28, e2664.	4.0	27
4	Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS). Journal of Civil Structural Health Monitoring, 2021, 11, 833-849.	3.9	37
5	Monitoring Reinforced Concrete Cracking Behavior under Uniaxial Tension Using Distributed Fiber-Optic Sensing Technology. Journal of Structural Engineering, 2021, 147, .	3.4	9
6	Distributed fiber optic strain sensing of bending deformation of a well mockup in the laboratory. Journal of Natural Gas Science and Engineering, 2021, 96, 104309.	4.4	7
7	Numerical investigation of the role of masonry typology on shear strength. Engineering Structures, 2019, 192, 86-102.	5.3	30
8	Numerical evaluation of test setups for determining the shear strength of masonry. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	11